Patents by Inventor Tianping Huang

Tianping Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110108270
    Abstract: The components of surfactant-laden fluids, such as those used in hydrocarbon recovery operations such as for stimulation, e.g. hydraulic fracturing, may be re-used and re-cycled into components for subsequent use in a wide range of similar or different operational fluids. In particular, aqueous fluids gelled with viscoelastic surfactants and having components therein to pseudo-crosslink the elongated VES micelles and for internal breaking may be separated into its component parts by relatively inexpensive methods such as filtration. One filtration method includes contacting the surfactant-containing fluid with a particle pack having particulate additives therein which filter out or extract fine solids from the fluid. In an alternate embodiment the surfactant-laden fluid is a nano- and/or micro-emulsion wellbore cleanup fluid.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 12, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Publication number: 20110098377
    Abstract: Water production from a subterranean formation is inhibited or controlled by pumping a fluid containing coated particles through a wellbore into the formation. The particles have been previously coated with a relative permeability modifier (RPM). Upon contact with water, the RPM coating expands or swells and inhibits and controls the production of water. The RPM may be a water hydrolyzable polymer having a weight average molecular weight greater than 100,000. The particles may be conventional proppants or gravel.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham
  • Publication number: 20110083902
    Abstract: Compositions including relatively low reactivity acids and having a pH of from about 2 to about 5, mixed with viscoelastic surfactants (VESs) and internal breakers may serve as fluids, in a non-limiting embodiment as drill-in fluids, to open underground hydrocarbon reservoirs with carbonate contents of 10 wt % or above. The fluids initially have low viscosities. After the fluid flows out of the drill bit, the acids react with carbonates in the formation thereby increasing the pH of the fluids causing the VES to gel the fluid at the bottom of the hole and within the formation rock. Even when the subterranean formation contains naturally-occurring fractures, the viscosified fluid will reduce fluid loss into the formation. After drilling through the targeted formation, internal breakers in the viscosified fluids will break down the fluids to permit their removal, and production of the well with very little or no near well bore damage.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 14, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, David E. Clark
  • Publication number: 20110030952
    Abstract: Changing concentrations of brine in a gravel pack carrier fluid gelled with a viscoelastic surfactant (VES) increases the fluid efficiency for gravel packing long interval wells, such as wellbore producing interval greater than about 100 feet (about 30 m). VES-gelled fluids used as gravel packing fluids herein also include surfactants, fluid loss control agents, internal breakers and brine in addition to the grave. The viscoelasticity of fluid system can suspend and deliver high concentration of the gravels while reducing carrier fluid volume.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 10, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, Allen D. Gabrysch, Brian A. Evans
  • Publication number: 20110017470
    Abstract: Devices, systems and related methods control a flow of a fluid between a wellbore tubular and a formation using a flow control device having a flow space formed therein; and a flow control element positioned in flow space. The flow control element may be configured to flex between a first radial position and a second radial position to in response to a pressure differential along the flow space.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 27, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Richard Yingqing Xu, Tianping Huang
  • Patent number: 7875575
    Abstract: Viscoelastic surfactant (VES) based fluid systems for zone isolation and flow control are effective in water and/or gas shutoff applications. The fluid systems may include brine, a viscosity enhancer, as well as the VES, and optionally a stabilizer for high temperature applications. The stabilizer may be an alkali earth metal oxide, alkali earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, Al2O3, and mixtures thereof. The viscosity enhancer may include pyroelectric particles, piezoelectric particles, and mixtures thereof. The fluid system is easy to pump into the formation, and after pumping, the fluid system will generate very high viscosities to prevent the VES fluid from flowing back to stop undesirable water and/or gas production.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: January 25, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham
  • Publication number: 20110005752
    Abstract: Water production produced from a subterranean formation is inhibited or controlled by consolidated water sensitive porous medium (WSPM) packed within the flow path of the wellbore device container. The WSPM includes solid particles having a water hydrolyzable polymer at least partially coating the particles. The WSPM is packed under pressure within the flow path of the wellbore device container to consolidate it. The WSPM increases resistance to flow as water content increases in the fluid flowing through the flow path and decreases resistance to flow as water content decreases in the fluid flowing through the flow path.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 13, 2011
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, Richard A. Mitchell
  • Publication number: 20110000672
    Abstract: A treating fluid may contain an effective amount of a particulate additive to stabilize clays, such as clays in a subterranean formation, by inhibiting or preventing them from swelling and/or migrating, where the particulate additive is an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, transition metal oxide, transition metal hydroxide, post-transition metal oxide, post-transition metal hydroxide, piezoelectric crystal, and/or pyroelectric crystal. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help stabilize the clays. These treating fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing, completion fluids, gravel packing fluids and fluid loss pills. The carrier fluid used in the treating fluid may be aqueous, brine, alcoholic or hydrocarbon-based.
    Type: Application
    Filed: November 25, 2008
    Publication date: January 6, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Publication number: 20100314108
    Abstract: Dual-function nano-sized particles or nanoparticles may be effective at fixating or reducing fines migration and they may facilitate identification of a particular zone in a well having more than one zone. In some embodiments the dual-function nanoparticles are tagged with a detectable material that is distinguishable from the composition of the primary nanoparticle component. In these embodiments, the taggant material rather than the primary component of the nanoparticles may be used to enable identification of a particular zone. The nanoparticles (with or without taggant) may be added to a treatment fluid containing carrier particles such as proppant. The treatment fluid is pumped downhole to one of the zones; each zone receiving its own unique or uniquely-tagged nanoparticles. Should one of the zones fail, the composition of the nanoparticles (or its taggant) produced on the carrier particles may be correlated to the zone from which it was received, and hence produced.
    Type: Application
    Filed: June 18, 2010
    Publication date: December 16, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang, Othon Monteiro
  • Publication number: 20100314113
    Abstract: Incorporating water-based polymer breakers, such as oxidizers, enzymes and/or acids, into a mixture of an oil and oil-soluble surfactants creates an emulsion that can then perform as a dual-functional breaker for reducing the viscosity of hybrid fluids gelled with both a viscoelastic surfactant (VES) and a polymer. The outer phase of the dual-functional breaker emulsion is oil, e.g. a mineral oil, containing an oil-soluble surfactant that will, over time and with heat, break the VES portion of the gel. As it does so, the polymer breaker in the internal aqueous phase will be released to then break the polymer portion of the gel. The polymer breaker will not start to break the polymer gel before the oil-soluble surfactant starts to break the VES gel. The overall breaking using the emulsion is slower as compared to introducing the polymer breaker and the oil-soluble surfactant in a non-emulsified form.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 16, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20100286000
    Abstract: A fracturing fluid, gravel pack fluid and/or frac pack fluid containing particles such as proppants, gravel and/.or sand, may contain an effective amount of a nano-sized particulate additive to fixate or reduce fines migration, where the particulate additive is an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides piezoelectric crystals and pyroelectric crystals. The nano-sized particulate additive is optionally bound to the particles with a coating agent such as an oil, alcohol, glycol, glycol ethers, ketones, terpenes, etc. The particle size of the magnesium oxide or other agent may be nanometer scale but may be a larger scale than nanometer but still relatively small, which scale may provide unique particle charges that help fixate the formation fines.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 11, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham, James R. Pace, Christopher K. Belcher
  • Patent number: 7825075
    Abstract: Piezoelectric crystal particles (which include pyroelectric crystal particles) enhance the viscosity of aqueous fluids that have increased viscosity due to the presence of viscoelastic surfactants (VESs). In one non-limiting theory, when the fluid containing the viscosity enhancers is heated and/or placed under pressure, the particles develop surface charges that associate, link, connect, or relate the VES micelles thereby increasing the viscosity of the fluid. The higher fluid viscosity is beneficial to crack the formation rock during a fracturing operation, reduce fluid leakoff, and carry high loading proppants to maintain the high conductivity of fractures.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: November 2, 2010
    Assignee: Baker Hughes Incorporated
    Inventor: Tianping Huang
  • Publication number: 20100263866
    Abstract: An aqueous, viscoelastic fluid gelled with a viscosifier, e.g. a viscoelastic surfactant, is stabilized and improved with an effective amount of a particulate additive such as alkaline earth metal oxides, alkaline earth metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures, and may also help control fluid loss. These particulate additives have unique particle charges that use chemisorption, “crosslinking” and/or other chemistries to associate and stabilize the VES fluids, and also help trap or fixate formation fines when placed in a gravel pack or a proppant pack in a fracture. Some of these effects may be more pronounced the smaller the size of the particulate additive.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 21, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, John Robert Willingham
  • Publication number: 20100261622
    Abstract: Viscoelastic surfactant (VES) gelled aqueous fluids containing water, a VES, an internal breaker, a VES stabilizer, a fluid loss control agent and a viscosity enhancer are useful as treating fluids and particularly as fracturing fluids for subterranean formations. These VES-based fluids have faster and more complete clean-up than polymer-based fracturing fluids. The use of an internal breaker permits ready removal of the unique VES micelle based pseudo-filter cake with several advantages including reducing the typical VES loading and total fluid volume since more VES fluid stays within the fracture, generating a more optimum fracture geometry for enhanced reservoir productivity, and treating reservoirs with permeability above the present VES limit of approximately 400 md to at least 2000 md.
    Type: Application
    Filed: May 19, 2010
    Publication date: October 14, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang, Allen D. Gabrysch, James H. Treadway, John R. Willingham, Patrick A. Kelly, William R. Wood
  • Publication number: 20100261624
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a synergistic internal breaker composition that contains at least one first internal breaker that may be a mineral oil and a second breaker that may be an unsaturated fatty acid. The internal breakers may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. This combination of different types of internal breakers break the VES-gelled aqueous fluid faster than if one of the breaker types is used alone in an equivalent total amount.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 14, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Publication number: 20100252266
    Abstract: An aqueous fluid system that contains an aqueous dicarboxylic acid solution, a viscoelastic surfactant as a gelling agent to increase the viscosity of the fluid, and an internal breaker such as mineral oil and/or fish oil to controllably break the viscosity of the fluid provides a self-diverting acid treatment of subterranean formations. The internal breaker may be at least one mineral oil, a polyalphaolefin oil, a saturated fatty acid, and/or is an unsaturated fatty acid. The VES gelling agent does not yield viscosity until the organic acid starts to spend. Full viscosity yield of the VES gelling agent typically occurs at about 6.0 pH. The internal breaker allows the VES gelling agent to fully viscosify the spent organic acid at 6.0 pH and higher, but as the spent-acid VES gelled fluid reaching reservoir temperature, controllable break of the VES fluid viscosity over time can be achieved.
    Type: Application
    Filed: January 23, 2007
    Publication date: October 7, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20100212899
    Abstract: Disclosed herein is a downhole sealing element. The element includes, a malleable member having at least one closed wall cavity therein positionable downhole in a gap defined between downhole members, and a chemical disposed within the at least one closed wall cavity. The malleable member is deformable to fill variations in a dimension of the gap and the chemical is reactive to form a nonflowable element.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, Richard Y. Xu
  • Publication number: 20100197531
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of an internal breaker composition that contains at least one mineral oil, at least one polyalphaolefin oil, at least one saturated fatty acid and/or at least one unsaturated fatty acid. The internal breaker may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the internal breaker, e.g. mineral oil, is added to the fluid after it has been substantially gelled. An oil-soluble surfactant is present to enhance or accelerate the reduction of viscosity of the gelled aqueous fluid.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 5, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Patent number: 7723272
    Abstract: Viscoelastic surfactant (VES) gelled aqueous fluids containing water, a VES, an internal breaker, a VES stabilizer, a fluid loss control agent and a viscosity enhancer are useful as treating fluids and particularly as fracturing fluids for subterranean formations. These VES-based fluids have faster and more complete clean-up than polymer-based fracturing fluids. The use of an internal breaker permits ready removal of the unique VES micelle based pseudo-filter cake with several advantages including reducing the typical VES loading and total fluid volume since more VES fluid stays within the fracture, generating a more optimum fracture geometry for enhanced reservoir productivity, and treating reservoirs with permeability above the present VES limit of approximately 400 md to at least 2000 md.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: May 25, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang, Allen D. Gabrysch, James H. Treadway, John R. Willingham, Patrick A. Kelly, William R. Wood
  • Patent number: 7721803
    Abstract: A fracturing fluid, gravel pack fluid and/or frac pack fluid containing particles such as proppants, gravel and/or sand, may contain an effective amount of a nano-sized particulate additive to fixate or reduce fines migration, where the particulate additive is an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides piezoelectric crystals and pyroelectric crystals. The nano-sized particulate additive is bound to the particles with a coating agent such as an oil. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help fixate the formation fines. The carrier fluid used in the treating fluid may be aqueous, brine, alcoholic or hydrocarbon-based.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 25, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham, James R. Pace, Christopher K. Belcher