Patents by Inventor Tianping Huang

Tianping Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100108613
    Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively remove coal fines from aqueous fluids, such as contaminated water. A porous substrate treated with nanoparticles, such as alkaline earth metal oxides/hydroxides, transition metal oxides/hydroxides, post-transition metal oxides/hydroxides, piezoelectric crystals, and/or pyroelectric crystals, may remove a substantial portion of coal fines from an aqueous fluid. It is believed that the nanoparticles capture and hold the coal fines in the particle pack due to surface forces, including van der Waals and/or electrostatic forces. The nanoparticles may be applied to the substrate via a coating agent, such as alcohol, glycol, polyol, olefin, vegetable oil, fish oil, and/or mineral oil.
    Type: Application
    Filed: December 21, 2009
    Publication date: May 6, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Patent number: 7703531
    Abstract: An aqueous, viscoelastic fluid gelled with a viscoelastic surfactant (VES) is stabilized with an effective amount of an alkaline earth metal oxide alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, and post-transition metal hydroxides. These fluids are more stable and have a reduced or no tendency to precipitate, particularly at elevated temperatures, and may also help control fluid loss. When the particle size of the magnesium oxide or other particulate agent is a nanometer scale, for instance having a mean particle size of 100 nm or less, that scale may provide particle charges that use chemisorption, “crosslinking” and/or other chemistries to associate and stabilize the VES fluids, and also help trap or fixate formation fines when deposited into a proppant pack in a fracture.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 27, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John Robert Willingham
  • Patent number: 7703522
    Abstract: Unconsolidated formation sand in the near wellbore region may be uniformly consolidated using a system including a sodium silicate solution and a hardener, such as at least one dialkyl ester of a dicarboxylic acid. Subsequently, a low concentration acid, such as hydrofluoric (HF) acid, is pumped through and into the consolidated sand to create channels or passageways to connect the formation hydrocarbons with the wellbore for production of the hydrocarbons through the wellbore. Hydrofluoric acid may be generated in situ by hydrolyzing a substance to hydrofluoric acid where the substance may include ammonium bifluoride, ammonium fluoride, alkali metal fluorides, alkali metal bifluorides, transition metal fluorides, and the like, and mixtures thereof. The acid may instead or additionally include organic acids and other mineral acids.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: April 27, 2010
    Assignee: Baker Hughes Incorporated
    Inventor: Tianping Huang
  • Patent number: 7696134
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of a synergistic internal breaker composition that contains at least one first internal breaker that may be a mineral oil and a second breaker that may be an unsaturated fatty acid. The internal breakers may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. This combination of different types of internal breakers break the VES-gelled aqueous fluid faster than if one of the breaker types is used alone in an equivalent total amount.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: April 13, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Patent number: 7696135
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their viscosities reduced (gels broken) by the direct or indirect action of an internal breaker composition that contains at least one mineral oil, at least one polyalphaolefin oil, at least one saturated fatty acid and/or at least one unsaturated fatty acid. The internal breaker may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the internal breaker, e.g. mineral oil, is added to the fluid after it has been substantially gelled. An oil-soluble surfactant is present to enhance or accelerate the reduction of viscosity of the gelled aqueous fluid.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: April 13, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Publication number: 20100071957
    Abstract: Compositions Including Relatively Low Reactivity Acids, Mixed with viscoelastic surfactants (VESs) and internal breakers may serve as drill-in fluids to open underground hydrocarbon reservoirs with carbonate contents of 10 wt % or above. The drill-in fluids have low viscosities in the drilling pipe. After the fluid flows out of the drill bit, the acids react with carbonates in the formation thereby increasing the pH of the drill-in fluids causing the VES to gel the fluid at the bottom of the hole and the downhole annulus between the drilling pipe and the formation rock. The viscosified drill-in fluid will reduce fluid loss and will carry no dissolved drilling debris to the surface. After drilling through the targeted formation, the internal breakers in the viscosified drill-in fluids will break down the fluids to permit their removal, and the well is ready to produce with very little or no near well bore damage.
    Type: Application
    Filed: October 27, 2009
    Publication date: March 25, 2010
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham
  • Publication number: 20100038085
    Abstract: Unconsolidated formation sand in the near wellbore region may be uniformly consolidated using a system including a sodium silicate solution and a hardener, such as at least one dialkyl ester of a dicarboxylic acid. Subsequently, a low concentration acid, such as hydrofluoric (HF) acid, is pumped through and into the consolidated sand to create channels or passageways to connect the formation hydrocarbons with the wellbore for production of the hydrocarbons through the wellbore. Hydrofluoric acid may be generated in situ by hydrolyzing a substance to hydrofluoric acid where the substance may include ammonium bifluoride, ammonium fluoride, alkali metal fluorides, alkali metal bifluorides, transition metal fluorides, and the like, and mixtures thereof. The acid may instead or additionally include organic acids and other mineral acids.
    Type: Application
    Filed: May 19, 2008
    Publication date: February 18, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Publication number: 20100000734
    Abstract: The migration of coal fines within a bed is reduced, inhibited or constrained by contacting the fines with nanoparticles, such as magnesium oxide crystals having an average particle size of about 30 nm. These nanoparticles may coat a proppant during the fracturing of a subterranean formation to produce methane from a coal bed therein. The nanoparticles may also treat a proppant pack in a fractured coal bed. The nanoparticles cause the coal fines to thus bind to or associate with the proppants. Thus, most of the coal fines entering fractures away from the near-wellbore region will be restrained or controlled near their origin or source and the production of methane at a desired level will be maintained much longer than a similar situation than where the nanoparticles are not used.
    Type: Application
    Filed: August 25, 2009
    Publication date: January 7, 2010
    Applicant: Baker Hughes Incoporated
    Inventors: Tianping Huang, James B. Crews, Allen D. Gabrysch, Rick M. Jeffrey
  • Publication number: 20090312204
    Abstract: Water flood materials may contain an effective amount of a nano-sized particulate additive to inhibit or control the movement of fines within a subterranean formation during a water flood secondary recovery operation. The particulate additive may be an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, transition metal oxide, transition metal hydroxide, post-transition metal oxide, post-transition metal hydroxide, piezoelectric crystal, and/or pyroelectric crystal. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help control and stabilize the fines, e.g. clays.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 17, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Publication number: 20090312203
    Abstract: Piezoelectric crystal particles (which include pyroelectric crystal particles) enhance the viscosity of aqueous fluids that have increased viscosity due to the presence of viscoelastic surfactants (VESs). In one non-limiting theory, when the fluid containing the viscosity enhancers is heated and/or placed under pressure, the particles develop surface charges that associate, link, connect, or relate the VES micelles thereby increasing the viscosity of the fluid. The higher fluid viscosity is beneficial to crack the formation rock during a fracturing operation, reduce fluid leakoff, and carry high loading proppants to maintain the high conductivity of fractures.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 17, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Publication number: 20090312201
    Abstract: A treating fluid may contain an effective amount of a particulate additive to fixate or reduce fines migration, where the particulate additive is an alkaline earth metal oxide alkaline earth metal hydroxide, alkali metal oxides, alkali metal hydroxides transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides piezoelectric crystals and pyroelectric crystals. The particle size of the magnesium oxide or other agent may be nanometer scale, which scale may provide unique particle charges that help fixate the formation fines. These treating fluids may be used as treatment fluids for subterranean hydrocarbon formations, such as in hydraulic fracturing, completion fluids, gravel packing fluids and fluid loss pills. The carrier fluid used in the treating fluid may be aqueous, brine, alcoholic or hydrocarbon-based.
    Type: Application
    Filed: October 31, 2007
    Publication date: December 17, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, John R. Willingham, Christopher K. Belcher
  • Publication number: 20090305915
    Abstract: The handling, transport and delivery of particulate materials, particularly fine particles, may be difficult. Alkaline earth metal oxide particles such as magnesium oxide (MgO) may be suspended in glycerin and/or alkylene glycols such as propylene glycol up to loadings of 51 wt %. Such suspensions or slurries make it easier to deliver MgO and similar agents into fluids, such as aqueous fluids gelled with viscoelastic surfactants (VES). These concentrated suspensions or slurries may be improved in their stability by the inclusion of minor amounts of a vegetable oil and/or a fish oil. The MgO serves as stabilizers and/or fluid loss control agents for VES-gelled fluids used to treat subterranean formations, e.g. for well completion or stimulation in hydrocarbon recovery operations. The particle size of the magnesium oxide or other agent may be between 1 nanometer to 0.4 millimeter.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 10, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20090286703
    Abstract: Solid, particulate dicarboxylic acids may be fluid loss control agents and/or viscosifying agents for viscoelastic surfactant (VES) fluids in treatments such as well completion or stimulation in hydrocarbon recovery operations. The fluid loss control agents may include, but not be limited to, dodecanedioic acid, undecanedioic acid, decanedioic acid, azelaic acid, suberic acid, and mixtures thereof having a mesh size of from about 20 mesh to about 400 mesh (about 841 to about 38 microns). A mutual solvent or a blend of at least two alcohols subsequently added to the aqueous viscoelastic surfactant treating fluid will at least partially dissolve the solid, particulate dicarboxylic acid fluid loss control agents, and optionally also “break” or reduce the viscosity of the aqueous viscoelastic surfactant treating fluid.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Publication number: 20090286702
    Abstract: Non-aqueous carrier fluids containing nano-sized particles in high concentration are effective for zone isolation and flow control in water shutoff applications for subterranean formations. The nanoparticles interact with water and solidify it to inhibit its flow, but do not have the same effect on hydrocarbons and thus selectively assist the production of hydrocarbons while suppressing water. Suitable nanoparticles include alkaline earth metal oxides, alkaline earth metal hydroxides, alkali metal oxides, alkali metal hydroxides, transition metal oxides, transition metal hydroxides, post-transition metal oxides, post-transition metal hydroxides, piezoelectric crystals, and/or pyroelectric crystals.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, Michael H. Johnson
  • Patent number: 7615517
    Abstract: Fluids viscosified with viscoelastic surfactants (VESs) may have their fluid loss properties improved with at least one mineral oil which has a viscosity greater than 20 cps at ambient temperature. The mineral oil may initially be dispersed oil droplets in an internal, discontinuous phase of the fluid. In one non-limiting embodiment, the mineral oil is added to the fluid after it has been substantially gelled in an amount between about 0.2 to about 10% by volume.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: November 10, 2009
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20090272534
    Abstract: Viscoelastic surfactant (VES) based fluid systems are effective to pre-saturate high permeability subterranean formations prior to a treatment operation that would undesirably suffer from high fluid leakoff. The fluid systems may include brine, a viscosity enhancer, as well as the VES, and a high temperature stabilizer. The stabilizer may be an alkaline earth metal oxide, alkaline earth metal hydroxide, alkali metal oxide, alkali metal hydroxide, Al2O3, and mixtures thereof. The viscosity enhancer may include pyroelectric particles, piezoelectric particles, and mixtures thereof. The fluid system is easy to pump into the formation, and after initial pumping, the fluid system will soak into and occupy or “pre-saturate” the pores of the formation prior to pumping of a second treating fluid for fracturing, gravel packing, frac-packing, and the like. The methods are practiced in the absence of acids typically used in acidizing operations, such as hydrochloric acid and hydrofluoric acid.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 5, 2009
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John Robert Willingham
  • Publication number: 20090266765
    Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively filter and purify liquids such as waste water. Proppant beds treated with nanoparticles may fixate or reduce fines migration therethrough. When tiny contaminant particles or fines in these fluids flow through the nanoparticle-treated bed or pack, the nanoparticles will capture and hold the tiny contaminant or fines particles within the pack due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces. Nanoparticle-treated beds or packs may be recharged by contacting the bed with an inorganic acid (but not hydrofluoric acid) or an organic acid, and optionally followed by subsequent treatment with hydrofluoric acid. This treating substantially removes the nanoparticles and the fine particulates that have been removed from a fluid (e.g. wastewater being treated, produced fluids in a formation, etc.). The particle pack may then be re-treated or recharged with nanoparticles.
    Type: Application
    Filed: August 21, 2008
    Publication date: October 29, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, John Robert Willingham
  • Publication number: 20090266766
    Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively filter and purify liquids such as waste water. When tiny contaminant particles in waste water flow through the particle pack, the nanoparticles will capture and hold the tiny contaminant particles within the pack due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the particle surfaces in the filter beds or packs.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20090253596
    Abstract: Alkaline earth metal compounds may be fluid loss control agents for viscoelastic surfactant (VES) fluids used for well completion or stimulation in hydrocarbon recovery operations. The VES fluid may further include proppant or gravel, if it is intended for use as a fracturing fluid or a gravel packing fluid, although such uses do not require that the fluid contain proppant or gravel. The fluid loss control agents may include, but not be limited to, oxides and hydroxides of alkaline earth metal, and in one case magnesium oxide where the particle size of the magnesium oxide is between 1 nanometer to 0.4 millimeter. The fluid loss agent appears to associate with the VES micelles and together form a novel pseudo-filter cake crosslinked-like viscous fluid layer that limits further VES fluid flow into the porous media. The fluid loss control agent solid particles may be added along with VES fluids.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 8, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews, James H. Treadway, JR.
  • Publication number: 20090192053
    Abstract: Agents, chemicals and particles may be controllably released at remote locations, such as pre-selected or predetermined portions of subterranean formations, by binding or associating or trapping them with an association of micelles formed by a viscoelastic surfactant (VES) in an aqueous base fluid to increase the viscosity of the fluid. An internal breaker within the association of micelles disturbs the association of micelles at some later, predictable or predetermined time thereby reducing the viscosity of the aqueous viscoelastic treating fluid and releasing the agent, chemical or particle at a predetermined or selected location.
    Type: Application
    Filed: March 16, 2009
    Publication date: July 30, 2009
    Applicant: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang