Patents by Inventor Tien-Jen Cheng

Tien-Jen Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8232200
    Abstract: Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: July 31, 2012
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd., Advanced Micro Devices, Inc., Infineon Technologies AG
    Inventors: Hyeok-Sang Oh, Woo-Jin Jang, Bum-Ki Moon, Ji-Hong Choi, Minseok Oh, Tien-Jen Cheng
  • Publication number: 20120061234
    Abstract: A method for cleaning a deposition chamber includes forming a deposited layer over an interior surface of the deposition chamber, wherein the deposited layer has a deposited layer stress and a deposited layer modulus; forming a cleaning layer over the deposited layer, wherein a material comprising the cleaning layer is selected such that the cleaning layer adheres to the deposited layer, and has a cleaning layer stress and a cleaning layer modulus, wherein the cleaning layer stress is higher than the deposited layer stress, and wherein the cleaning layer modulus is higher than the deposited layer modulus; and removing the deposited layer and the cleaning layer from the interior of the deposition chamber.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien-Jen Cheng, Zhengwen Li, Keith Kwong Hon Wong
  • Patent number: 8105937
    Abstract: A dielectric layer is patterned with at least one line trough and/or at least one via cavity. A metallic nitride liner is formed on the surfaces of the patterned dielectric layer. A metal liner is formed on the surface of the metallic nitride liner. A conformal copper nitride layer is formed directly on the metal liner by atomic layer deposition (ALD) or chemical vapor deposition (CVD). A Cu seed layer is formed directly on the conformal copper nitride layer. The at least one line trough and/or the at least one via cavity are filled with an electroplated material. The direct contact between the conformal copper nitride layer and the Cu seed layer provides enhanced adhesion strength. The conformal copper nitride layer may be annealed to covert an exposed outer portion into a contiguous Cu layer, which may be employed to reduce the thickness of the Cu seed layer.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Tien-Jen Cheng, Zhengwen Li, Keith Kwong Hon Wong, Huilong Zhu
  • Publication number: 20110183520
    Abstract: The invention is directed to a method for removing copper oxide from a copper surface to provide a clean copper surface, wherein the method involves exposing the copper surface containing copper oxide thereon to an anhydrous vapor containing a carboxylic acid compound therein, wherein the anhydrous vapor is generated from an anhydrous organic solution containing the carboxylic acid and one or more solvents selected from hydrocarbon and ether solvents.
    Type: Application
    Filed: January 28, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien-Jen Cheng, Stephan Grunow, Zhengwen Li, Huilong Zhu
  • Publication number: 20110162875
    Abstract: A metal interconnect structure provides high adhesive strength between copper atoms in a copper-containing structure and a self-aligned copper encapsulation layer, which is selectively deposited only on exposed copper surfaces. A lower level metal interconnect structure comprises a first dielectric material layer and a copper-containing structure embedded in a lower metallic liner. After a planarization process that forms the copper-containing structure, a material that forms Cu—S bonds with exposed surfaces of the copper-containing structure is applied to the surface of the copper-containing structure. The material is selectively deposited only on exposed Cu surfaces, thereby forming a self-aligned copper encapsulation layer, and provides a high adhesion strength to the copper surface underneath. A dielectric cap layer and an upper level metal interconnect structure can be subsequently formed on the copper encapsulation layer.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien-Jen Cheng, Abhishek Dube, Zhengwen Li, Huilong Zhu
  • Patent number: 7923836
    Abstract: A microelectronic element and a related method for fabricating such is provided. The microelectronic element comprises a contact pad overlying a major surface of a substrate. The contact pad has a composition including copper at a contact surface. A passivation layer is also provided overlying the major surface of the substrate. The passivation layer overlies the contact pad such that it exposes at least a portion of the contact surface. A plurality of metal layers arranged in a stack overlie the contact surface and at least a portion of the passivation layer. The stack includes multiple layers, which can have different thicknesses and different metals, with the lowest layer including titanium (Ti) and nickel (Ni) in contact with the contact surface.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Tien-Jen Cheng, Roger A. Quon
  • Patent number: 7767575
    Abstract: A method for forming an interconnect structure for a semiconductor device includes defining a via in a passivation layer so as expose a top metal layer in the semiconductor device. A seed layer is formed over the passivation layer, sidewalls of the via, and the top metal layer. A barrier layer is formed over an exposed portion of the seed layer, the exposed portion defined by a first patterned opening of a first diameter, and a solder material is formed over the barrier layer using a second patterned opening of a second diameter. The second patterned opening is configured such that the second diameter is larger than the first diameter.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: August 3, 2010
    Assignee: Tessera Intellectual Properties, Inc.
    Inventors: Kamalesh K. Srivastava, Subhash L. Shinde, Tien-Jen Cheng, Sarah H. Knickerbocker, Roger A. Quinn, William E. Sablinski, Julie C. Biggs, David E. Eichstadt, Jonathan H. Griffith
  • Publication number: 20100038789
    Abstract: A dielectric layer is patterned with at least one line trough and/or at least one via cavity. A metallic nitride liner is formed on the surfaces of the patterned dielectric layer. A metal liner is formed on the surface of the metallic nitride liner. A conformal copper nitride layer is formed directly on the metal liner by atomic layer deposition (ALD) or chemical vapor deposition (CVD). A Cu seed layer is formed directly on the conformal copper nitride layer. The at least one line trough and/or the at least one via cavity are filled with an electroplated material. The direct contact between the conformal copper nitride layer and the Cu seed layer provides enhanced adhesion strength. The conformal copper nitride layer may be annealed to covert an exposed outer portion into a contiguous Cu layer, which may be employed to reduce the thickness of the Cu seed layer.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 18, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tien-Jen Cheng, Zhengwen Li, Keith Kwong Hon Wong, Huilong Zhu
  • Patent number: 7572726
    Abstract: A method of forming wire bonds in (I/C) chips comprising: providing an I/C chip having a conductive pad for a wire bond with at least one layer of dielectric material overlying the pad; forming an opening through the dielectric material exposing a portion of said pad. Forming at least a first conductive layer on the exposed surface of the pad and on the surface of the opening. Forming a seed layer on the first conductive layer; applying a photoresist over the seed layer; exposing and developing the photoresist revealing the surface of the seed layer surrounding the opening; removing the exposed seed layer; removing the photoresist material in the opening revealing the seed layer. Plating at least one second layer of conductive material on the seed layer in the opening, and removing the first conductive layer on the dielectric layer around the opening. The invention also includes the resulting structure.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 11, 2009
    Assignee: International Business Machines Corporation
    Inventors: Julie C. Biggs, Tien-Jen Cheng, David E. Eichstadt, Lisa A. Fanti, Jonathan H. Griffith, Randolph F. Knarr, Sarah H. Knickerbocker, Kevin S. Petrarca, Roger A. Quon, Wolfgang Sauter, Kamalesh K. Srivastava, Richard P. Volant
  • Patent number: 7566649
    Abstract: Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: July 28, 2009
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Tien-Jen Cheng, Marie S. Cole, David E. Eichstadt, Mukta G. Farooq, John A. Fitzsimmons, Lewis S. Goldmann, John U. Knickerbocker, Tasha E. Lopez, David J. Welsh
  • Publication number: 20090163019
    Abstract: A method for forming an interconnect structure for a semiconductor device includes defining a via in a passivation layer so as expose a top metal layer in the semiconductor device. A seed layer is formed over the passivation layer, sidewalls of the via, and the top metal layer. A barrier layer is formed over an exposed portion of the seed layer, the exposed portion defined by a first patterned opening of a first diameter, and a solder material is formed over the barrier layer using a second patterned opening of a second diameter. The second patterned opening is configured such that the second diameter is larger than the first diameter.
    Type: Application
    Filed: January 2, 2009
    Publication date: June 25, 2009
    Applicant: International Business Machines Corporation
    Inventors: Kamalesh K. Srivastava, Subhash L. Shinde, Tien-Jen Cheng, Sarah H. Knickerbocker, Roger A. Quon, William E. Sablinski, Julie C. Biggs, David E. Eichstadt, Jonathan H. Griffith
  • Patent number: 7473997
    Abstract: A method for forming an interconnect structure for a semiconductor device includes defining a via in a passivation layer so as expose a top metal layer in the semiconductor device. A seed layer is formed over the passivation layer, sidewalls of the via, and the top metal layer. A barrier layer is formed over an exposed portion of the seed layer, the exposed portion defined by a first patterned opening. The semiconductor device is annealed so as to cause atoms from the barrier layer to diffuse into the seed layer thereunderneath, wherein the annealing causes diffused regions of the seed layer to have an altered electrical resistivity and electrode potential with respect to undiffused regions of the seed layer.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: January 6, 2009
    Assignee: International Business Machines Corporation
    Inventors: Kamalesh K. Srivastava, Subhash L. Shinde, Tien-Jen Cheng, Sarah H. Knickerbocker, Roger A. Quon, William E. Sablinski, Julie C. Biggs, David E. Eichstadt, Jonathan H. Griffith
  • Publication number: 20080119056
    Abstract: A solution for wet etching a copper film within a ball limiting metallurgy (BLM) of a semiconductor device includes, in an exemplary embodiment, an ammonium persulfate etching agent, a potassium sulfate passivation agent for protecting a PbSn solder material, and a pH modifier for controlling the etch rate of the copper film.
    Type: Application
    Filed: November 16, 2006
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Carla A. Bailey, Tien-Jen Cheng, Robert Henry, Anurag Jain, Vall F. McLean, Krystyna W. Semkow, Kamalesh K. Srivastava
  • Patent number: 7332821
    Abstract: Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: February 19, 2008
    Assignee: International Business Machines Corporation
    Inventors: William E. Bernier, Tien-Jen Cheng, Marie S. Cole, David E. Eichstadt, Mukta G. Farooq, John A. Fitzsimmons, Lewis S. Goldmann, John U. Knickerbocker, Tasha E. Lopez, David J. Welsh
  • Publication number: 20080017984
    Abstract: A microelectronic element and a related method for fabricating such is provided. The microelectronic element comprises a contact pad overlying a major surface of a substrate. The contact pad has a composition including copper at a contact surface. A passivation layer is also provided overlying the major surface of the substrate. The passivation layer overlies the contact pad such that it exposes at least a portion of the contact surface. A plurality of metal layers arranged in a stack overlie the contact surface and at least a portion of the passivation layer. The stack includes multiple layers, which can have different thicknesses and different metals, with the lowest layer including titanium (Ti) and nickel (Ni) in contact with the contact surface.
    Type: Application
    Filed: July 21, 2006
    Publication date: January 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mukta G. Farooq, Tien-Jen Cheng, Roger A. Quon
  • Publication number: 20080009101
    Abstract: Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
    Type: Application
    Filed: September 20, 2007
    Publication date: January 10, 2008
    Inventors: William Bernier, Tien-Jen Cheng, Marie Cole, David Eichstadt, Mukta Farooq, John Fitzsimmons, Lewis Goldmann, John Knickerbocker, Tasha Lopez, David Welsh
  • Patent number: 7144490
    Abstract: A method for selective electroplating of a semiconductor input/output (I/O) pad includes forming a titanium-tungsten (TiW) layer over a passivation layer on a semiconductor substrate, the TiW layer further extending into an opening formed in the passivation layer for exposing the I/O pad, such that the TiW layer covers sidewalls of the opening and a top surface of the I/O pad. A seed layer is formed over the TiW layer, and portions of the seed layer are selectively removed such that remaining seed layer material corresponds to a desired location of interconnect metallurgy for the I/O pad. At least one metal layer is electroplated over the remaining seed layer material, using the TiW layer as a conductive electroplating medium.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: December 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Tien-Jen Cheng, David E. Eichstadt, Jonathan H. Griffith, Sarah H. Knickerbocker, Rosemary A. Previti-Kelly, Roger A. Quon, Kamalesh K. Srivastava, Keith Kwong-Hon Wong
  • Publication number: 20060249854
    Abstract: A durable chip pad for integrated circuit (IC) chips, semiconductor wafer with IC chips with durable chip pads in a number of die locations and a method of making the IC chips on the wafer. The chip may be probed for performance testing with the probe contacting the durable chip pads directly.
    Type: Application
    Filed: June 29, 2006
    Publication date: November 9, 2006
    Inventors: Tien-Jen Cheng, David Eichstadt, Jonathan Griffith, Sarah Knickerbocker, Samuel McKnight, Kevin Petrarca, Kamalesh Srivastava, Roger Quon
  • Publication number: 20060081981
    Abstract: A method of forming wire bonds in (I/C) chips comprising: providing an I/C chip having a conductive pad for a wire bond with at least one layer of dielectric material overlying the pad; forming an opening through the dielectric material exposing a portion of said pad. Forming at least a first conductive layer on the exposed surface of the pad and on the surface of the opening. Forming a seed layer on the first conductive layer; applying a photoresist over the seed layer; exposing and developing the photoresist revealing the surface of the seed layer surrounding the opening; removing the exposed seed layer; removing the photoresist material in the opening revealing the seed layer. Plating at least one second layer of conductive material on the seed layer in the opening, and removing the first conductive layer on the dielectric layer around the opening. The invention also includes the resulting structure.
    Type: Application
    Filed: November 10, 2005
    Publication date: April 20, 2006
    Applicant: International Business Machines Corporation
    Inventors: Julie Biggs, Tien-Jen Cheng, David Eichstadt, Lisa Fanti, Jonathan Griffith, Randolph Knarr, Sarah Knickerbocker, Kevin Petrarca, Roger Quon, Wolfgang Sauter, Kamalesh Srivastava, Richard Volant
  • Publication number: 20060040567
    Abstract: Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
    Type: Application
    Filed: August 20, 2004
    Publication date: February 23, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William Bernier, Tien-Jen Cheng, Marie Cole, David Eichstadt, Mukta Farooq, John Fitzsimmons, Lewis Goldmann, John Knickerbocker, Tasha Lopez, David Welsh