Patents by Inventor Tigran Galstian

Tigran Galstian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9065991
    Abstract: Methods are provided for wafer scale manufacturing camera modules without adjustment components to compensate for assembly errors and optical errors incurred within manufacturing tolerances. Camera modules are assembled in wafer arrays from arrays of image sensors, arrays of lens structures and arrays of optical trim elements. At least one of the arrays is a wafer. Lens structures are configured to provide less optical power than necessary to focus an image at infinity on image sensors without trim elements. A test performed during the wafer scale assembly of camera modules, after at least the sensor array and the lens structure array assembled, determines optical errors by identifying optical distortions and aberrations quantified in terms of optical power, astigmatism, coma, optical axis shift and optical axis reorientation deficiencies. Corresponding trim elements are configured to counteract distortions and aberrations prior to singulating useful camera modules from the array.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: June 23, 2015
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Armen Zohrabyan, Karen Asatryan, Amir Tork, Vladimir Presniakov, Aram Bagramyan
  • Publication number: 20150146137
    Abstract: A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Inventors: Armen Zohrabyan, Karen Asatryan, Tigran Galstian, Vladimir Presniakov, Amir Tork, Aram Bagramyan
  • Patent number: 9036102
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device can be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and can be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: May 19, 2015
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Armen Zohrabyan
  • Patent number: 9030595
    Abstract: An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: May 12, 2015
    Assignee: Lensvector Inc.
    Inventors: Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Marco Thiboutot, Armen Zohrabyan, Aram Bagramyan, Amir Tork, Ted Cooper, Behzad Khodadad, Gongjian Hu, Chong I Cheang, Jeffrey James Parker
  • Patent number: 8994915
    Abstract: A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: March 31, 2015
    Assignee: LensVector Inc.
    Inventors: Armen Zohrabyan, Karen Asatryan, Tigran Galstian, Vladimir Presniakov, Amir Tork, Aram Bagramyan
  • Publication number: 20150055037
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Publication number: 20150055035
    Abstract: An apparatus for controlling light transmission from an optical input to an optical output can function as a tunable iris or eclipse, or as a privacy window. The iris/eclipse can use a liquid crystal matrix with a dispersion of dichroic particles that absorb light in one orientation and transmit light in another, such that controlling the liquid crystal with an electric field allows control of the dichroic particles. Alternatively, a layer may be used with a light absorbing liquid or powder material that moves with a charged material in response to a variable electric field applied to the layer. Privacy windows use a plurality of liquid crystal microlenses that can be controlled with an electric field to allow an image of an optical input to be obtainable at an optical output when in a first state, or to render the image irretrievable when in a second state.
    Type: Application
    Filed: October 2, 2014
    Publication date: February 26, 2015
    Inventor: Tigran GALSTIAN
  • Patent number: 8860901
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The drive signal source uses pulse-width modulation to set a frequency and an amplitude of the drive signal.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Lensvector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Patent number: 8797499
    Abstract: A liquid crystal lens or beam steering device is made by programming alignment surfaces of the LC cell walls using a programming field to align the alignment surface molecules before fixing them. By setting the desired pre-tilt, the lens can operate in the absence of the control field, and power consumption by the control field can be reduced.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: August 5, 2014
    Assignee: Lensvector Inc.
    Inventor: Tigran Galstian
  • Publication number: 20140139768
    Abstract: An electrode structure is proposed for controlling a spatially non-uniform electric field driving a tunable liquid crystal lens or beam steering device. The spatially non-uniform electrode structure enables the generation of a predetermined spatially non-uniform electric field profile where complex capacitive coupling between multiple different electrically floating neighboring electrode segments is employed for the generation of the electrical field of desired form by supplying an initial electric potential to a limited number of electrodes.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 22, 2014
    Applicant: LensVector Inc.
    Inventors: Tigran GALSTIAN, Vladimir PRESNIAKOV, Karen ASATRYAN, Amir TORK, Armen ZOHRABYAN, Aram BAGRAMYAN
  • Patent number: 8679274
    Abstract: A wafer level method of manufacturing a liquid crystal optical device removes the need for a rigid barrier fillet while minimizing any risk of contamination of the liquid crystal. An uncured adhesive may be deposited on a bottom substrate and partially cured to form a liquid crystal barrier. After addition of the liquid crystal and a top substrate, the adhesive is fully cured to bond the substrate layers together. An uncured adhesive may be used together with the partially cured adhesive, and may be deposited separately or filled into an extracellular matrix surrounding a plurality of liquid crystal cells. The adhesive may be cured by a variety of means, including light that may be spatially modulated. One or both of the substrates may be deformed during assembly so as to create a structure with a lensing effect on light passing through the liquid crystal region.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 25, 2014
    Assignee: Lensvector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Publication number: 20140049682
    Abstract: An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
    Type: Application
    Filed: October 14, 2011
    Publication date: February 20, 2014
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Marco Thiboutot, Armen Zohrabyan, Aram Bagramyan, Amir Tork, Ted Cooper, Behzad Khodadad, Gongjian Hu, Chong I Cheang, Jeffrey James Parker
  • Publication number: 20140036183
    Abstract: A liquid crystal optical device has a layered structure with split liquid crystal layers having alignment surfaces that define in a liquid crystal material pre-tilt angles of opposite signs. Four liquid crystal layers can provide two directions of linear polarization. In the case of a lens, the device can be a gradient index lens, and the alignment surfaces can have a spatially uniform pre-tilt.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: LENSVECTOR INC.
    Inventors: Karen ASATRYAN, Tigran GALSTIAN, Aram BAGRAMYAN, Vladimir PRESNIAKOV, Amir TORK, Armen ZOHRABYAN, Peter P. CLARK
  • Patent number: 8629932
    Abstract: A camera module and method for focusing a tunable lens configured to continuously vary its optical power in response to a drive signal. A drive circuit generates the drive signal so that the tunable lens performs a continuous scan of its optical power. An image sensor is configured to acquire light images passing through the tunable lens, and to convert the light images to image signals during the continuous scan. A processor is configured to generate focus scores of the acquired light images using the image signals during the continuous scan. The processor is configured to determine from the focus scores a peak focus score achieved or achievable, and to instruct the drive circuit to adjust the drive signal so that the tunable lens settles at a value of the optical power that corresponds to the peak focus score.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 14, 2014
    Assignee: Lensvector, Inc.
    Inventors: Tigran Galstian, Peter P. Clark, Thomas Charles Antognini, Jeffrey James Parker, Derek Alexandre Proudian, Thomas Edwin Killick, Armen Zohrabyan
  • Publication number: 20130314632
    Abstract: A tunable liquid crystal lens employing a dual frequency liquid crystal material exhibiting a dielectric anisotropy about a crossover frequency at room temperature is provided. A tunable liquid crystal lens drive signal having low and high frequency components about the crossover frequency, applies a spatially modulated electric field to the dual frequency liquid crystal layer, wherein the differential root means square amplitude determines the optical power. Changing the differential root means square amplitude provides optical power changes under prevailing excitation conditions providing improvements in optical power change speed. Employing drive signal pulses can impart further optical power change speed improvements. A variety of tunable liquid crystal lens structures employing the proposed solution are described.
    Type: Application
    Filed: December 9, 2011
    Publication date: November 28, 2013
    Applicant: LENSVECTOR INC.
    Inventors: Armen Zohrabyan, Karen Asatryan, Tigran Galstian, Vladimir Presniakov, Amir Tork, Aram Bagramyan
  • Patent number: 8553197
    Abstract: A variable optical device for controlling the propagation of light has a liquid crystal layer (1), electrodes (4) arranged to generate an electric field acting on the liquid crystal layer, and an electric field modulation layer (3,71) arranged between the electrodes and adjacent the liquid crystal layer for spatially modulating said electric field in a manner to control the propagation of light passing through said optical device. The electric field modulation layer has either an optical index of refraction that is essentially spatially uniform, or a polar liquid or gel, or a very high low frequency dielectric constant material having a dielectric constant greater than 20, and preferably greater than 1000.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 8, 2013
    Assignee: Universite Laval
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan
  • Publication number: 20130250197
    Abstract: A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 26, 2013
    Applicant: LENSVECTOR INC.
    Inventors: Behzad Khodadad, Michael J. Nystrom, Bahram Afshari, Karen Asatryan, Tigran Galstian
  • Patent number: 8542333
    Abstract: A liquid crystal display or other light modulator is provide with an alignment layer with a pretilt that is better than is currently available with rubbing technology. The liquid crystal cell consumes less electrical power to operate. The pretilt can be programmed using suitable field and recorded in the alignment layer.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 24, 2013
    Assignee: Universite Laval
    Inventor: Tigran Galstian
  • Publication number: 20130033673
    Abstract: Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate The effect of device operation on incident light is optically sensed The sensed effect is analyzed to identify device defects Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
    Type: Application
    Filed: October 27, 2010
    Publication date: February 7, 2013
    Applicant: LENSVECTOR, INC.
    Inventors: Bahram Afshari, Karen Asatryan, Peter P. Clark, Tigran Galstian, Michael J. Nystrom, Vladimir Presniakov, Sergei Yakovenko, Armen Zohrabyan
  • Patent number: 8319908
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: November 27, 2012
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan