Patents by Inventor Tigran Galstian

Tigran Galstian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120257131
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device can be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and can be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Application
    Filed: December 23, 2010
    Publication date: October 11, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Armen Zohrabyan
  • Publication number: 20120242924
    Abstract: An apparatus for controlling light transmission from an optical input to an optical output can function as a tunable iris or eclipse, or as a privacy window. The iris/eclipse can use a liquid crystal matrix with a dispersion of dichroic particles that absorb light in one orientation and transmit light in another, such that controlling the liquid crystal with an electric field allows control of the dichroic particles. Alternatively, a layer may be used with a light absorbing liquid or powder material that moves with a charged material in response to a variable electric field applied to the layer. Privacy windows use a plurality of liquid crystal microlenses that can be controlled with an electric field to allow an image of an optical input to be obtainable at an optical output when in a first state, or to render the image irretrievable when in a second state.
    Type: Application
    Filed: December 10, 2010
    Publication date: September 27, 2012
    Applicant: Lensvector Inc.
    Inventor: Tigran Galstian
  • Publication number: 20120188490
    Abstract: A liquid crystal optical device is provided. The optical device includes a liquid crystal cell controlling optical properties of light passing therethrough and has: a liquid crystal layer, a planar electrode located to one side of said liquid crystal layer; an electric field control structure located to the opposite side of the liquid crystal layer; and a wavefront adjustment structure configured to provide optical phase front adjustment. In some embodiments the wavefront adjustment structure is a conductive floating electrode. In other embodiments the wavefront adjustment structure is a weakly conductive structure having spatially variable sheet resistance. In other embodiments the wavefront adjustment structure a weakly conductive structure having spatially variable sheet resistance having a frequency dependent characteristic.
    Type: Application
    Filed: January 27, 2012
    Publication date: July 26, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Armen ZOHRABYAN, Karen ASATRYAN, Tigran GALSTIAN, Vladimir PRESNIAKOV, Amir TORK, Aram BAGRAMYAN
  • Publication number: 20120140037
    Abstract: A motionless adaptive focus stereoscopic scene capture apparatus employing tunable liquid crystal lenses is provided. The apparatus includes at least two image sensors preferably fabricated as a monolithic stereo image capture component and at least two corresponding tunable liquid crystal lenses preferably fabricated as a monolithic focus adjustment component. Using a variable focus tunable liquid crystal lens at each aperture stop provides constant magnification focus control. Controlled spatial variance of a spatially variant electric field applied to the liquid crystal of each tunable liquid crystal lens provides optical axis shift enabling registration between stereo images. A controller implements coupled auto-focusing methods employing multiple focus scores derived from at least two camera image sensors and providing multiple tunable liquid crystal lens drive signals for synchronous focus acquisition of a three dimensional scene.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 7, 2012
    Applicant: LENSVECTOR, INC.
    Inventors: Tigran GALSTIAN, Peter P. CLARK, Suresh VENKATRAMAN
  • Publication number: 20120140044
    Abstract: A motionless adaptive focus stereoscopic scene capture apparatus employing tuneable liquid crystal lenses is provided. The apparatus includes at least two image sensors preferably fabricated as a monolithic stereo image capture component and at least two corresponding tuneable liquid crystal lenses preferably fabricated as a monolithic focus adjustment component. Using a variable focus tuneable liquid crystal lens at each aperture stop provides constant magnification focus control. Controlled spatial variance of a spatially variant electric field applied to the liquid crystal of each tuneable liquid crystal lens provides optical axis shift enabling registration between stereo images. A controller implements coupled auto-focusing methods employing multiple focus scores derived from at least two camera image sensors and providing multiple tuneable liquid crystal lens drive signals for synchronous focus acquisition of a three dimensional scene.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 7, 2012
    Applicant: LENSVECTOR, INC.
    Inventors: Tigran GALSTIAN, Peter P. CLARK, Suresh VENKATRAMAN
  • Publication number: 20120127380
    Abstract: A tunable optical imaging system uses a fixed lens and a tunable liquid crystal lens that is operated only outside of an operational range of high aberration. A voltage range applied to change the optical power of the liquid crystal lens is limited to a continuous tunable range of low aberration. The relative positioning between the lens and a corresponding photodetector, and the relative lens powers of a fixed lens and the tunable lens, may be selected to compensate for any optical power offsets resulting from the limitation of the voltage range of the tunable lens. The lens may be operated in either positive tunability or negative tunability mode.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 24, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Tigran GALSTIAN, Karen ASATRYAN, Vladimir PRESNIAKOV, Armen ZOHRABYAN, Amir TORK, Aram BAGRAMYAN
  • Patent number: 8184217
    Abstract: A variable optical device for controlling the propagation of light has a body of liquid crystal optical material with a center and a periphery, a heating system including an electrically controllable heat source and a thermal radiator arranged at the periphery for cooling a portion of the body of material. The heating system is operative to generate a spatially modulated temperature gradient and to provide a desired light propagation behavior.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: May 22, 2012
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Armen Zohrabyan, Karen Asatryan, Amir Tork, Vladimir Presniakov, Aram Bagramyan
  • Patent number: 8184218
    Abstract: An electromagnetic source has an electrode structure coupled to a substrate. The electrode structure has interspaced electrodes, at least one of which is spiral-shaped. At least one electrical contact interconnects the electrodes of the electrode structure. The electrode structure is responsive to an applied electrical current to generate a spatially non-uniform magnetic field. This field can act on a LC layer such that optical properties of the layer are controllable.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: May 22, 2012
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Karen Asatryan, Amir Tork, Vladimir Presniakov, Armen Zohrabyan, Aram Babramyan
  • Publication number: 20120120335
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Application
    Filed: September 16, 2011
    Publication date: May 17, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Publication number: 20120113318
    Abstract: Methods are provided for wafer scale manufacturing camera modules without adjustment components to compensate for assembly errors and optical errors incurred within manufacturing tolerances. Camera modules are assembled in wafer arrays from arrays of image sensors, arrays of lens structures and arrays of optical trim elements. At least one of the arrays is a wafer. Lens structures are configured to provide less optical power than necessary to focus an image at infinity on image sensors without trim elements. A test performed during the wafer scale assembly of camera modules, after at least the sensor array and the lens structure array assembled, determines optical errors by identifying optical distortions and aberrations quantified in terms of optical power, astigmatism, coma, optical axis shift and optical axis reorientation deficiencies. Corresponding trim elements are configured to counteract distortions and aberrations prior to singulating useful camera modules from the array.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 10, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Tigran GALSTIAN, Armen ZOHRABYAN, Karen ASATRYAN, Amir TORK, Vladimir PRESNIAKOV, Aram BAGRAMYAN
  • Patent number: 8149377
    Abstract: A tunable-focusing liquid crystal lens (TLCL) cell has a liquid crystal layer arranged within a cell gap defined between substrates, a layer of optically transparent material arranged between the first substrate and the LC layer, and a liquid crystal alignment layer arranged between the optically transparent layer and the LC layer. The alignment layer is provided on a third optically transparent substrate having a non-planar shape for giving a non-planar profile to the LC layer, which substrate is obtained from a flexible sheet initially provided with the alignment layer and then formed into the non-planar shape. The lens further has a first optically transparent electrode provided on the second substrate, a second optically transparent electrode provided on either or both of first and third substrates. The electrodes are arranged to generate an electric field acting on the LC layer to change the focal distance of the LC cell. Methods for fabricating such TLCL cell are also provided.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 3, 2012
    Assignee: LensVector Inc.
    Inventors: Vladimir Presniakov, Tigran Galstian, Karen Asatryan, Amir Tork, Aram Bagramyan, Armen Zohrabyan
  • Publication number: 20120006466
    Abstract: A wafer level method of manufacturing a liquid crystal optical device removes the need for a rigid barrier fillet while minimizing any risk of contamination of the liquid crystal. An uncured adhesive may be deposited on a bottom substrate and partially cured to form a liquid crystal barrier. After addition of the liquid crystal and a top substrate, the adhesive is fully cured to bond the substrate layers together. An uncured adhesive may be used together with the partially cured adhesive, and may be deposited separately or filled into an extracellular matrix surrounding a plurality of liquid crystal cells. The adhesive may be cured by a variety of means, including light that may be spatially modulated. One or both of the substrates may be deformed during assembly so as to create a structure with a lensing effect on light passing through the liquid crystal region.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 12, 2012
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Patent number: 8072574
    Abstract: A tunable optical imaging system uses a fixed lens and a tunable liquid crystal lens that is operated only outside of an operational range of high aberration. A voltage range applied to change the optical power of the liquid crystal lens is limited to a continuous tunable range of low aberration. The relative positioning between the lens and a corresponding photodetector, and the relative lens powers of a fixed lens and the tunable lens, may be selected to compensate for any optical power offsets resulting from the limitation of the voltage range of the tunable lens. The lens may be operated in either positive tunability or negative tunability mode.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 6, 2011
    Assignee: LensVector
    Inventors: Tigran Galstian, Karen Asatryan, Vladimir Presniakov, Armen Zohrabyan, Amir Tork, Aram Bagramyan
  • Patent number: 8033054
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Grant
    Filed: June 21, 2009
    Date of Patent: October 11, 2011
    Assignee: Lensvector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabyan, Aram Bagramyan
  • Patent number: 8028473
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: October 4, 2011
    Assignee: LensVector Inc.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabian, Aram Bagramian
  • Patent number: 8031323
    Abstract: A variable focus liquid crystal lens includes a nematic liquid crystal/monomer mixture having a spatially inhomogenous polymer network structure, and an electrode for applying a substantially uniform voltage to the nematic liquid crystal/monomer mixture. The lens is created within a cell by applying a substantially uniform electric field to the nematic liquid crystal/monomer mixture within the cell, while simultaneously irradiating the nematic liquid crystal/monomer mixture using a laser beam having a shaped intensity distribution, so as to induce formation of a spatially inhomogenous polymer network structure within the cell.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: October 4, 2011
    Assignee: Université Laval
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork
  • Publication number: 20110216257
    Abstract: Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
    Type: Application
    Filed: February 2, 2011
    Publication date: September 8, 2011
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Vladimir Presniakov, Karen Asatryan, Amir Tork, Armen Zohrabian, Aram Bagramian
  • Publication number: 20110181797
    Abstract: Liquid crystal optoelectronic devices are produced by fabricating a wafer-level component structure and affixing a plurality of discrete components to a surface structure prior to singulating the individual devices therefrom. After singulation, the individual devices include a portion of the wafer-level fabricated structure and at least of the discrete components. The wafer-level structure may include a liquid crystal and controlling electrodes, and the discrete components may include fixed lenses or image sensors. The discrete components may be located on either or both of two sides of the wafer-level structure. Multiple liquid crystal layers may be used to reduce nonuniformities in the interaction with light from different angles, and to control light of different polarizations. The liquid crystal devices may function as optoelectronic devices such as tunable lenses, shutters or diaphragms.
    Type: Application
    Filed: September 1, 2009
    Publication date: July 28, 2011
    Applicant: LENSVECTOR INC.
    Inventors: Tigran Galstian, Derek Alexandre Proudian, Behram Afshari, Michael J. Nystrom, Peter Clark
  • Publication number: 20110122362
    Abstract: A liquid crystal lens or beam steering device is made by programming alignment surfaces of the LC cell walls using a programming field to align the alignment surface molecules before fixing them. By setting the desired pre-tilt, the lens can operate in the absence of the control field, and power consumption by the control field can be reduced.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 26, 2011
    Applicant: LENSVECTOR INC.
    Inventor: Tigran Galstian
  • Publication number: 20110116020
    Abstract: A liquid crystal display or other light modulator is provide with an alignment layer with a pretilt that is better than is currently available with rubbing technology. The liquid crystal cell consumes less electrical power to operate. The pretilt can be programmed using suitable field and recorded in the alignment layer.
    Type: Application
    Filed: July 14, 2009
    Publication date: May 19, 2011
    Applicant: UNIVERSITE LAVAL
    Inventor: Tigran Galstian