Patents by Inventor Tim Boescke

Tim Boescke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145615
    Abstract: A sensor device includes a carrier having a via for guiding an electrical contact from a bottom surface to a top surface of the carrier. The device also includes an integrated circuit on the carrier, a sensor element, an optoelectronic component on the top surface of the carrier, and a first electrically conductive contact element on the via an electrically connected thereto. The device further includes a substantially opaque encapsulation material enclosing the sensor element, the optoelectronic component, and the first electrically conductive contact element such that a surface of the sensor element and of the optoelectronic component opposite the carrier is uncovered by the encapsulation material.
    Type: Application
    Filed: February 22, 2022
    Publication date: May 2, 2024
    Inventors: Tim BOESCKE, Maximilian ASSIG, Thomas SCHWARZ, Andreas WALDSCHIK
  • Patent number: 11888078
    Abstract: A semiconductor photodiode (600) comprises a top side (602) with an active surface area (604) for light entry, a bottom side (606), a bulk structure (610) made of a single semiconductor material, the bulk structure comprising a p-type layer (612a) and an n-type layer (612b), which together form the p-n junction (612) of the photodiode, wherein one of the two layers of the p-n junction is an upper p-n junction layer (612a) and the other one is a lower p-n junction layer (612b), wherein the upper p-n junction layer (612a) is located proximate to the active surface area (604), and a semiconductor light absorption layer (614), wherein the light absorption layer (612a), (614) defines the active surface area (604) and is arranged on top of the bulk structure (610), above the upper p-n junction layer (612a), and the semiconductor material of the light absorption layer (614) is different from the semiconductor material of the bulk structure (610), the light absorption layer (614) and the upper p-n junction layer (612
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: January 30, 2024
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Massimo Cataldo Mazzillo, Tim Boescke, Wolfgang Zinkl
  • Patent number: 11881824
    Abstract: A transimpedance amplifier may include a voltage-controlled operational amplifier having a non-inverting input connected to ground, an inverting input receiving a current signal to be amplified, an output coupled to the inverting input via a coupling resistor, and a power-down input (PWDN input) activated upon receipt of at least one power-down signal (PWDN) such that at least one internal current source is thereupon deactivated.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 23, 2024
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Tim Boescke
  • Patent number: 11646820
    Abstract: A method and an optical sensor are described herein. The optical sensor may include a communication interface for receiving data from a control unit and for transmitting data to the control unit, a storage unit with at least one register for storing data, and a CRC generator for generating a CRC checksum. The optical sensor may be configured in such a way that when data stored in the storage unit is to be transmitted to the control unit, the communication interface receives from the control unit a device address specific to the optical sensor and an address of a register in which the data to be transmitted is stored. The CRC generator may be initialized using the device address received from the communication interface and/or the register address received from the communication interface, before the CRC generator generates a CRC checksum for the data to be transmitted.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: May 9, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andrey Lysov, Tim Boescke
  • Publication number: 20230131042
    Abstract: An optoelectronic sensing device may include an optoelectronic detection device configured to detect light and provide an electrical signal as a function of detected light. The device may further include a signal detection device configured to store at least one signal value of the electrical signal in a memory during a time interval of repeating time intervals and to output an indication signal after the time interval has elapsed.
    Type: Application
    Filed: February 23, 2021
    Publication date: April 27, 2023
    Inventors: Andrey LYSOV, Tim BOESCKE
  • Publication number: 20230108848
    Abstract: In an embodiment an optoelectronic apparatus includes a light detector having a bottom side, an upper side and at least one sidewall that extends between the upper side and the bottom side, a carrier having an upper surface on which the light detector is arranged such that the bottom side faces the carrier, at least one outer wall which is arranged on the surface of the carrier, the outer wall and the carrier forming a cavity with an opening in which the light detector resides, a filter covering the upper side of the light detector, the filter having a first threshold wavelength separating a first wavelength region from an adjacent second wavelength region, wherein the filter has a lower transmittance for light at wavelengths in the first wavelength region than for light at wavelengths in the second wavelength region and a first material layer covering the filter.
    Type: Application
    Filed: March 16, 2021
    Publication date: April 6, 2023
    Inventors: Massimo Cataldo Mazzillo, Faina Esser, Claus Jaeger, Tim Boescke
  • Publication number: 20220406954
    Abstract: A semiconductor photodiode (600) comprises a top side (602) with an active surface area (604) for light entry, a bottom side (606), a bulk structure (610) made of a single semiconductor material, the bulk structure comprising a p-type layer (612a) and an n-type layer (612b), which together form the p-n junction (612) of the photodiode, wherein one of the two layers of the p-n junction is an upper p-n junction layer (612a) and the other one is a lower p-n junction layer (612b), wherein the upper p-n junction layer (612a) is located proximate to the active surface area (604), and a semiconductor light absorption layer (614), wherein the light absorption layer (614) defines the active surface area (604) and is arranged on top of the bulk structure (610), above the upper p-n junction layer (612a), and the semiconductor material of the light absorption layer (614) is different from the semiconductor material of the bulk structure (610), the light absorption layer (614) and the upper p-n junction layer (612a) thus
    Type: Application
    Filed: January 8, 2021
    Publication date: December 22, 2022
    Inventors: Massimo Cataldo MAZZILLO, Tim BOESCKE, Wolfgang ZINKL
  • Patent number: 11530987
    Abstract: A photonic gas sensor and a method for producing a photonic gas sensor are disclosed. In an embodiment a photonic gas sensor includes a component housing with at least one cavity, a radiation-emitting semiconductor chip arranged in the cavity and configured to transmit electromagnetic radiation in a first wavelength range, a radiation-detecting semiconductor chip arranged in the cavity and configured to detect electromagnetic radiation in a second wavelength range and an active sensor element having a fluorescent dye configured to emit electromagnetic radiation in the second wavelength range upon being excited by electromagnetic radiation in the first wavelength range, wherein an intensity of the emitted electromagnetic radiation in the second wavelength range changes reversibly in presence of a gas to be detected.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: December 20, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Matthias Sperl, Tim Boescke, Daniele Brunazzo
  • Publication number: 20220353013
    Abstract: A method and an optical sensor are described herein. The optical sensor may include a communication interface for receiving data from a control unit and for transmitting data to the control unit, a storage unit with at least one register for storing data, and a CRC generator for generating a CRC checksum. The optical sensor may be configured in such a way that when data stored in the storage unit is to be transmitted to the control unit, the communication interface receives from the control unit a device address specific to the optical sensor and an address of a register in which the data to be transmitted is stored. The CRC generator may be initialized using the device address received from the communication interface and/or the register address received from the communication interface, before the CRC generator generates a CRC checksum for the data to be transmitted.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 3, 2022
    Inventors: Andrey LYSOV, Tim BOESCKE
  • Patent number: 11428627
    Abstract: In an embodiment a sensor device includes a first optoelectronic emitter configured to irradiate a spot with electromagnetic rays, a second optoelectronic emitter configured to irradiate the spot with electromagnetic rays, a detector configured to detect electromagnetic rays from the first and second emitters reflected at or transmitted through the spot, wherein the electromagnetic rays of the first emitter have a wavelength in a range of 1400-1500 nm, wherein the electromagnetic rays of the second emitter have a wavelength in a range of 900-1100 nm, and wherein the second emitter is configured to emit at least one further electromagnetic signal, the one further electromagnetic signal not being used for measuring a humidity.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: August 30, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Gerd Plechinger, Tim Boescke, Wolfgang Zinkl
  • Publication number: 20220228908
    Abstract: An optoelectronic sensor component for measuring light may include a first signal channel, a second signal channel, a first light-sensitive detection assembly, a second light-sensitive detection assembly, a further light-sensitive detection assembly, and an assigned further signal channel. The first signal channel may provide a first electrical signal, which represents the intensity of light incident on the sensor component. The second signal channel may provide a second electrical signal representing the intensity of the light incident on the sensor component. The first and second light-sensitive detection assemblies may generate the first and second electrical signals, respectively, and be assigned to the first and second signal channels, respectively. Both detection assemblies may have an identical spectral sensitivity and are thus redundant with respect to one another. The spectral sensitivity of both detection assemblies may have a photopic profile.
    Type: Application
    Filed: May 27, 2020
    Publication date: July 21, 2022
    Inventors: Andrey LYSOV, Tim BOESCKE
  • Patent number: 11371883
    Abstract: A semiconductor light source configured for a spectrometer may include at least one multipixel chip, at least one color setting component disposed optically downstream of at least one of emission region, and a drive unit. The color setting component may be configured for altering a spectral emission behavior of assigned emission regions. The drive unit may be configured to operate a plurality of mutually independently drivable emission regions successively, such that during operation thereof at least three spectrally narrowband individual spectra are emitted successively by the plurality of mutually independently drivable emission regions together with the associated color setting component from which individual spectra a total spectrum emitted by the semiconductor light source is constituted.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 28, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Christopher Koelper, Carola Diez, Tim Boescke, Thomas Kippes, Melanie Sternecker, Daniel Dietze
  • Publication number: 20220006433
    Abstract: A transimpedance amplifier may include a voltage-controlled operational amplifier having a non-inverting input connected to ground, an inverting input receiving a current signal to be amplified, an output coupled to the inverting input via a coupling resistor, and a power-down input (PWDN input) activated upon receipt of at least one power-down signal (PWDN) such that at least one internal current source is thereupon deactivated.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 6, 2022
    Inventor: Tim BOESCKE
  • Patent number: 11185243
    Abstract: A sensor device includes a first light emitter that emits light with a wavelength from a first spectral range, a second light emitter that emits light with a wavelength from a second spectral range, a first light detector configured to detect light with a wavelength from the first spectral range, but not to respond to light with a wavelength from the second spectral range, and a second light detector configured to detect light with a wavelength from the first spectral range and light with a wavelength from the second spectral range, wherein a distance between the first light emitter and the first light detector is smaller than a distance between the second light emitter and the second light detector.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: November 30, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Tim Böscke, Stephan Haslbeck
  • Publication number: 20210349016
    Abstract: In an embodiment a sensor device includes a first optoelectronic emitter configured to irradiate a spot with electromagnetic rays, a second optoelectronic emitter configured to irradiate the spot with electromagnetic rays, a detector configured to detect electromagnetic rays from the first and second emitters reflected at or transmitted through the spot, wherein the electromagnetic rays of the first emitter have a wavelength in a range of 1400-1500 nm, wherein the electromagnetic rays of the second emitter have a wavelength in a range of 900-1100 nm, and wherein the second emitter is configured to emit at least one further electromagnetic signal, the one further electromagnetic signal not being used for measuring a humidity.
    Type: Application
    Filed: September 20, 2019
    Publication date: November 11, 2021
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Gerd Plechinger, Tim Boescke, Wolfgang Zinkl
  • Patent number: 11114574
    Abstract: A semiconductor sensor includes a detector chip that detects green light and an interference filter that optically precedes the detector chip and is permeable to green light and impermeable and reflective to red light and near-infrared radiation. A color filter optically precedes the interference filter. The color filter has a transparency of at least 60% for green light and has an absorbing effect for red light and near-infrared radiation. The semiconductor sensor appears gray or black in the region of the interference filter independently of the angle.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 7, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Daniel Dietze, Tim Boescke, Wolfgang Zinkl
  • Publication number: 20200363335
    Abstract: A photonic gas sensor and a method for producing a photonic gas sensor are disclosed. In an embodiment a photonic gas sensor includes a component housing with at least one cavity, a radiation-emitting semiconductor chip arranged in the cavity and configured to transmit electromagnetic radiation in a first wavelength range, a radiation-detecting semiconductor chip arranged in the cavity and configured to detect electromagnetic radiation in a second wavelength range and an active sensor element having a fluorescent dye configured to emit electromagnetic radiation in the second wavelength range upon being excited by electromagnetic radiation in the first wavelength range, wherein an intensity of the emitted electromagnetic radiation in the second wavelength range changes reversibly in presence of a gas to be detected.
    Type: Application
    Filed: November 23, 2018
    Publication date: November 19, 2020
    Inventors: Matthias Sperl, Tim Boescke, Daniele Brunazzo
  • Publication number: 20200309597
    Abstract: A semiconductor light source configured for a spectrometer may include at least one multipixel chip, at least one color setting component disposed optically downstream of at least one of emission region, and a drive unit. The color setting component may be configured for altering a spectral emission behavior of assigned emission regions. The drive unit may be configured to operate a plurality of mutually independently drivable emission regions successively, such that during operation thereof at least three spectrally narrowband individual spectra are emitted successively by the plurality of mutually independently drivable emission regions together with the associated color setting component from which individual spectra a total spectrum emitted by the semiconductor light source is constituted.
    Type: Application
    Filed: October 9, 2018
    Publication date: October 1, 2020
    Inventors: Christopher Koelper, Carola Diez, Tim Boescke, Thomas Kippes, Melanie Sternecker, Daniel Dietze
  • Publication number: 20200272276
    Abstract: A mobile computing device is disclosed. In an embodiment a mobile computing device includes a display screen including a top surface and a bottom surface, and a vital sign monitoring (VSM) sensor located within the display screen or beneath the bottom surface of the display screen, wherein the VSM sensor is configured to measure one or more vital sign parameters of a user that places a body part on the top surface of the display screen above the VSM sensor.
    Type: Application
    Filed: June 28, 2019
    Publication date: August 27, 2020
    Inventors: Christoph Goeltner, Tim Böscke, Naresh Shetty
  • Publication number: 20200176616
    Abstract: A semiconductor sensor includes a detector chip that detects green light and an interference filter that optically precedes the detector chip and is permeable to green light and impermeable and reflective to red light and near-infrared radiation. A color filter optically precedes the interference filter. The color filter has a transparency of at least 60% for green light and has an absorbing effect for red light and near-infrared radiation. The semiconductor sensor appears gray or black in the region of the interference filter independently of the angle.
    Type: Application
    Filed: June 13, 2018
    Publication date: June 4, 2020
    Inventors: Daniel Dietze, Tim Boescke, Wolfgang Zinkl