Patents by Inventor Timothy A. M. Chuter

Timothy A. M. Chuter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9358097
    Abstract: A stent graft leg extension (10) to extend from a bifurcated aortic stent graft into an iliac artery. The stent graft has a tubular body. (12) of a biocompatible graft material and a plurality of self-expanding stents (14) joined to and supporting the tubular body. An uncovered tubular self-expanding stent assembly (26) extends from a first end of the tubular body and is fastened thereto. The uncovered tubular self-expanding stent assembly (26) provides a smooth transition from the leg extension into the iliac artery to reduce the chance of kinks causing problems in the leg extension.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 7, 2016
    Assignees: The Cleveland Clinic Foundation, Cook Medical Technologies LLC
    Inventors: Timothy A. M. Chuter, Roy K. Greenberg
  • Patent number: 9345595
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: May 24, 2016
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Publication number: 20160074183
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 17, 2016
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20160022412
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: October 6, 2015
    Publication date: January 28, 2016
    Applicant: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Publication number: 20160022966
    Abstract: Flexible high-pressure angioplasty balloons are disclosed herein which utilize an inflatable balloon positioned upon the catheter and a supporting structure secured over or along the catheter at a first location proximal to the balloon and at a second location distal to the balloon. Inflation of the balloon reconfigures the supporting structure to urge the first location and the second location towards one another thereby inhibiting longitudinal elongation of the balloon relative to the catheter. The supporting structure may surround, support, or otherwise extend over the entire length of the balloon and allows for the balloon to retain increased flexibility which enables the balloon to bend or curve even at relatively high inflation pressures.
    Type: Application
    Filed: October 1, 2015
    Publication date: January 28, 2016
    Inventor: Timothy A.M. Chuter
  • Patent number: 9226813
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft system may be used for endovascular treatment of a thoracic aortic aneurysm. The stent-graft system may comprise proximal and distal components, each comprising a graft having proximal and distal ends, where upon deployment the proximal and distal components at least partially overlap with one another to provide a fluid passageway therebetween. The proximal component may comprise a proximal stent having a plurality of proximal and distal apices connected by a plurality of generally straight portions, where a radius of curvature of at least one of the proximal apices may be greater than the radius of curvature of at least one of the distal apices. The distal component may comprise a proximal z-stent coupled to the graft, where the proximal end of the graft comprises at least scallop formed therein that generally follows the shape of the proximal z-stent.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: January 5, 2016
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Patent number: 9180030
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: November 10, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Mogelvang Jensen
  • Patent number: 9149612
    Abstract: Flexible high-pressure angioplasty balloons are disclosed herein which utilize an inflatable balloon positioned upon the catheter and a supporting structure secured over or along the catheter at a first location proximal to the balloon and at a second location distal to the balloon. Inflation of the balloon reconfigures the supporting structure to urge the first location and the second location towards one another thereby inhibiting longitudinal elongation of the balloon relative to the catheter. The supporting structure may surround, support, or otherwise extend over the entire length of the balloon and allows for the balloon to retain increased flexibility which enables the balloon to bend or curve even at relatively high inflation pressures.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: October 6, 2015
    Assignee: WEST COAST CATHETER, INC.
    Inventor: Timothy A. M. Chuter
  • Patent number: 9107743
    Abstract: The present invention embodies an endovascular graft having an attachment frame connection mechanism that allows placement of the main body component in vasculature in combination with limb components. Various limb component-to-main body component attachment mechanisms are provided which ensure a reliable bond while facilitating a smaller delivery profile.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 18, 2015
    Assignee: LifePort Sciences, LLC
    Inventors: Octavian Iancea, Timothy A. M. Chuter, Arnold M. Escano, Reid K. Hayashi, Robin W. Eckert, Matthew J. Fitz, Shahrokh R. Farahani, Juan I. Perez, Richard Newhauser, David T. Pollock, Aleta Tesar
  • Publication number: 20150216691
    Abstract: Apparatus and methods are provided for treating lesions within a blood vessel include a two-layer angioplasty balloon designed for the simultaneous deployment of multiple balloon-expanded stents. The high-compliance (elastic) outer balloon secures stent position. The low-compliance (inelastic) inner balloon drives angioplasty and stent expansion. Stent deployment starts with the injection of a small quantity of fluid into the outer balloon, which bulges slightly at both ends and into the spaces between the stents and, once the stent has expanded a little, between the struts of the stents. The injection port to the outer balloon is then closed, and fluid is injected only into the inner balloon, which expands, opening the stents.
    Type: Application
    Filed: December 18, 2013
    Publication date: August 6, 2015
    Inventor: Timothy A.M. Chuter
  • Publication number: 20150133988
    Abstract: Flexible high-pressure angioplasty balloons are disclosed herein which utilize an inflatable balloon positioned upon the catheter and a supporting structure secured over or along the catheter at a first location proximal to the balloon and at a second location distal to the balloon. Inflation of the balloon reconfigures the supporting structure to urge the first location and the second location towards one another thereby inhibiting longitudinal elongation of the balloon relative to the catheter. The supporting structure may surround, support, or otherwise extend over the entire length of the balloon and allows for the balloon to retain increased flexibility which enables the balloon to bend or curve even at relatively high inflation pressures.
    Type: Application
    Filed: September 22, 2014
    Publication date: May 14, 2015
    Inventor: Timothy A.M. Chuter
  • Patent number: 8992593
    Abstract: The present invention provides a modular stent-graft system. In one embodiment, a prosthesis comprises a first tubular graft comprising a layer of graft material, one lumen extending therein, and a first fenestration extending through the layer of graft material. A layer of fenestration covering material attaches to the layer of graft material. The layer of fenestration covering material is disposed in the lumen of the first tubular graft and partitions the first fenestration from the lumen of the first tubular graft. A first non-stented opening is disposed proximal to the first fenestration and communicates with the first fenestration between the layer of graft material and the fenestration covering material. In use, a proximal end of a second tubular graft sealably engages the first non-stented opening, and the second tubular graft further extends through the first fenestration and into a branch vessel.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: March 31, 2015
    Assignee: Cook Medical Technologies LLC
    Inventors: Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois
  • Publication number: 20150081006
    Abstract: A medical lumen-expansion balloon may include a generally cylindrical central body between first and second body end portions, a low-profile unexpanded first state and a radially-expanded second state, wherein the first body end portion is constrained by fiber material such that it will not expand longitudinally and circumferentially beyond a predetermined size, and the central body is constrained by fiber material so as to be circumferentially substantially noncompliant, but is longitudinally compliant, such that it will elongate with increased volume but will not substantially radially expand.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 19, 2015
    Inventors: Timothy A.M. Chuter, John Luke Chuter
  • Publication number: 20140277370
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A.M. Chuter, Blayne A. Roeder, Steven J. Charlesbois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Publication number: 20140200651
    Abstract: A stent graft and a stent graft system having a scallop at the proximal end of the stent graft and extending below the proximal edge, the scallop having two substantially longitudinally extending opposing side edges and a substantially laterally extending bottom edge parallel to the proximal edge of the stent graft and extending between the two substantially longitudinally extending opposing side edges to define a scallop parameter. The stent graft and stent graft system include side arms extending externally from the stent graft at an acute angle to the body of the stent graft with an open end of the side arms extending toward the proximal end of the stent graft.
    Type: Application
    Filed: January 31, 2014
    Publication date: July 17, 2014
    Applicant: Cook Medical Technologies LLC
    Inventors: Timothy A.M. Chuter, David Ernest Harley, Blayne A. Roeder
  • Patent number: 8740966
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 3, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew Huser, Jarin Kratzberg, Erik E. Rasmussen, Bent Oehlenschlaeger, Kim Møgelvang Jensen
  • Patent number: 8728145
    Abstract: Various stents and stent-graft systems for treatment of medical conditions are disclosed. In one embodiment, an exemplary stent-graft comprises first and second stents, which each may comprise a series of distal apices disposed distal to a proximal end of the graft, and a series of proximal apices disposed proximally beyond the proximal end of the graft. In one example, the first stent comprises a first uniform segment, and the second stent comprises a second uniform wire segment, where the first uniform segment comprises portions disposed both internal and external to the second uniform wire segment.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 20, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Timothy A. M. Chuter, Blayne A. Roeder
  • Patent number: 8715337
    Abstract: An implantable endoluminal prosthesis for replacing a damaged aortic valve is provided. In one embodiment, the prosthesis includes a balloon-expandable stent, a tubular conduit that extends into the ascending aorta, and a self-expanding stent. The tubular conduit extends across the balloon-expandable stent. The tubular conduit includes an artificial valve. The self-expanding stent extends across the tubular conduit into the ascending aorta. The balloon-expandable stent, the tubular conduit, and the self-expanding stent are coupled to provide unidirectional flow of fluid into the aorta and further into the coronary arteries. Also provided is a method for implanting the endoluminal prosthesis.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: May 6, 2014
    Assignee: Cook Medical Technologies LLC
    Inventor: Timothy A M Chuter
  • Patent number: 8632581
    Abstract: Conformable end sealing stent for treating aortic aneurysms with acute angulation having an end portion with a circumference and configured to exert a radial force against an inner wall of the aorta, said end portion comprised of one or more filaments formed into at least three intertwined curved loops, each loop having a first and second end and a curved section which curved section is shaped and sized to extend at least halfway around the circumference.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: January 21, 2014
    Assignee: Cook Medical Technologies LLC
    Inventor: Timothy A. M. Chuter
  • Patent number: 8628567
    Abstract: A system for repairing body lumens including a modular graft and a method for deploying the graft within the body lumen. The modular graft includes a first component having first and second legs portions which mate with second and third graft components, respectively. The second leg portion has a bell bottom shape. The modular graft further includes expandable members which aid in implanting the modular graft as well as facilitates the mating of its components. In order to repair the body lumen, the first component is placed at the repair site and thereafter the first and second legs are advanced to the repair site and attached to the first component. A further aspect of the invention is a fixation device which is adapted to perform an attachment function. The graft and the fixation device are configured to be axially separated from one another so as to allow the graft to attach to the vascular wall proximal of the graft.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: January 14, 2014
    Assignee: Cook Medical Technologies LLC
    Inventors: Timothy A. M. Chuter, David T. Pollock, Tamara L. Trayer