Patents by Inventor Timothy Day

Timothy Day has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7826503
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: November 2, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20100243891
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7796341
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: September 14, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7738518
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 15, 2010
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20100132581
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: January 29, 2010
    Publication date: June 3, 2010
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20100111122
    Abstract: A laser source assembly (10) for providing an assembly output beam (12) includes a first MIR laser source (352A), a second MIR laser source (352B), and a beam combiner (244). The first MIR laser source (352A) emits a first MIR beam (356A) that is in the MIR range and the second MIR laser source (352B) emits a second MIR beam (356B) that is in the MIR range. Further, the beam combiner (244) spatially combines the first MIR beam (356A) and the second MIR beam (356B) to provide the assembly output beam (12). With this design, a plurality MIR laser sources (352A) (352B) can be packaged in a portable, common module, each of the MIR laser sources (352A) (352B) generates a narrow linewidth, accurately settable MIR beam (356A) (356B), and the MIR beams (356A) (356B) are combined to create a multiple watt assembly output beam (12) having the desired power. The beam combiner (244) can includes a combiner lens (364) and an output optical fiber (366).
    Type: Application
    Filed: April 21, 2009
    Publication date: May 6, 2010
    Applicant: Daylight Solutions, Inc.
    Inventors: Michael Pushkarsky, Timothy Day, David F. Arnone
  • Publication number: 20100110198
    Abstract: An optical illuminator assembly (10) for locating an object (20) in inclement conditions (22) includes a MIR laser source (12) having a semiconductor laser that directly emits (without frequency conversion) an output beam (16) that is in the MIR range, the output beam (16) being useful for locating the object (20). Additionally, the optical illuminator assembly (10) can include a MIR imager (14) that captures an image (18) of light in the MIR range near the object (20). Further, the MIR imager (14) can include an image display (26) that displays the captured image (18). In a first example, the MIR laser source (12) and the MIR imager (14) are spaced apart, and the image (18) captured by the MIR imager (14) includes the output beam (16) from the MIR laser source (12). With this design, a person (28) operating a vehicle (24) will be able to locate the object 20 in inclement conditions 22. In a second example, the MIR laser source (12) and the MIR imager (14) are positioned in close proximity to each other.
    Type: Application
    Filed: March 30, 2009
    Publication date: May 6, 2010
    Applicant: Daylight Solutions, Inc.
    Inventors: Paul Larson, Eric B. Takeuchi, Miles James Weida, Timothy Day
  • Publication number: 20090268277
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 29, 2009
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20090262768
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled. The heat spreader not only serves to dissipate heat and conduct same to the TEC, but also serves as an optical platform to secure the optical elements within the housing in a fixed relationship relative on one another.
    Type: Application
    Filed: January 15, 2009
    Publication date: October 22, 2009
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20090225802
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Application
    Filed: September 4, 2008
    Publication date: September 10, 2009
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20090159798
    Abstract: An imaging system (10) for imaging an emitting gas (12) includes an imager (16) and a laser source (20). The imager (16) captures an image (18) of light in the mid-infrared (MIR) range. The laser source (20) includes a semiconductor laser (334) that directly emits an output beam (26) that is in the MIR range. The output beam (26) may be adapted to backscatter near and/or be absorbed by the emitting gas (12). Thus, when an emitting gas (12) is present, the gas (12) may absorb and attenuate the backscattered light. As a result thereof, a shadow or contrast (18A) corresponding to the emitting gas (12) may be visible in the image (18) that is captured by the imager (16).
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Inventors: Miles James Weida, Timothy Day, Eric B. Takeuchi
  • Patent number: 7535656
    Abstract: A lens may operate in the mid-IR spectral region and couple highly divergent beams into highly collimated beams. In combination with a light source having a characteristic output beam, the lens may provide highly stable, miniaturized mid-IR sources that deliver optical beams. An advanced mounting system may provide long term sturdy mechanical coupling and alignment to reduce operator maintenance. In addition, devices may also support electrical and thermal subsystems that are delivered via these mounting systems. A mid-IR singlet lens having a numerical aperture greater than about 0.7 and a focal length less than 10 mm may be combined with a quantum well stack semiconductor based light source such that the emission facet of the semiconductor lies in the focus of the lens less than 2 mm away from the lens surface. Together, these systems may provide a package that is highly portable and robust, and easily integrated with external optical systems.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: May 19, 2009
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7535936
    Abstract: A compact mid-IR laser device utilizes an external cavity to tune the laser. The external cavity may employ a Littrow or Littman cavity arrangement. In the Littrow cavity arrangement, a filter, such as a grating, is rotated to provide wavelength gain medium selectivity. In the Littman cavity arrangement, a reflector is rotated to provide tuning. A quantum cascade laser gain medium provides mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens for both the output lens and the external cavity lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 19, 2009
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7492806
    Abstract: A compact mid-IR laser device utilizes a quantum cascade laser to provide mid-IR frequencies suitable for use in molecular detection by signature absorption spectra. The compact nature of the device is obtained owing to an efficient heat transfer structure, the use of a small diameter aspheric lens and a monolithic assembly structure to hold the optical elements in a fixed position relative to one another. The compact housing size may be approximately 20 cm×20 cm×20 cm or less. Efficient heat transfer is achieved using a thermoelectric cooler TEC combined with a high thermal conductivity heat spreader onto which the quantum cascade laser is thermally coupled.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: February 17, 2009
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20090028197
    Abstract: A MIR laser source that produces a fixed frequency output beam that is within the MIR range includes a QC gain media, and a wavelength dependent (“WD') feedback assembly that is spaced apart from the QC gain media and that cooperates with the QC gain media to form an external cavity. The WD feedback assembly may be used to precisely tune and control a lasing wavelength of the external cavity, and the position of the WD feedback assembly relative to the QC gain media may be fixed to maintain the precise lasing wavelength of the external cavity. With this design, each MIR laser source can be individually tuned to achieve the desired fixed frequency output beam that is within the MIR range.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventors: David F. Arnone, Timothy Day
  • Patent number: 7466734
    Abstract: Highly compact quantum well based laser systems with external cavity configurations are tightly integrated in a very small mounting system having high thermal and vibrational stability. The mounting systems may include adjustability and alignment features specifically designed to account for the particular nature of the micro components used. The laser systems may provide for wavelength selection, including dynamic wavelength selection. The laser systems may also provide special output couplers.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 16, 2008
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, David F. Arnone
  • Publication number: 20080304524
    Abstract: A highly portable, high-powered infrared laser source is produced by intermittent operation of a quantum cascade laser power regulated to a predetermined operating range that permits passive cooling. The regulation process may boost battery voltage allowing the use of more compact, low-voltage batteries.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 11, 2008
    Inventors: Rob Marsland, JR., Timothy Day
  • Publication number: 20080298406
    Abstract: Highly compact quantum well based laser systems with external cavity configurations are tightly integrated in a very small mounting system having high thermal and vibrational stability. The mounting systems may include adjustability and alignment features specifically designed to account for the particular nature of the micro components used. The laser systems may provide for wavelength selection, including dynamic wavelength selection. The laser systems may also provide special output couplers.
    Type: Application
    Filed: September 22, 2006
    Publication date: December 4, 2008
    Inventors: Timothy Day, David F. Arnone
  • Patent number: 7424042
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: September 9, 2008
    Assignee: Daylight Solutions, Inc.
    Inventors: Timothy Day, Miles James Weida
  • Publication number: 20080075133
    Abstract: In a semiconductor lasers using quantum well gain medium, a quantum well stack is mounted in an epi-down configuration. The epitaxial side of the device may be directly bonded to an efficient heat transport system so that heat may more easily leave the quantum well stack layers and be disposed at a heatsink. Such a device runs cooler and exhibits reduced loss mechanisms as represented by a laser system loss-line. External cavity systems using this configuration may permit a high degree of tunability, and these systems are particularly improved as the tuning range is extended by lowered cavity losses.
    Type: Application
    Filed: September 22, 2006
    Publication date: March 27, 2008
    Inventors: Timothy Day, Miles James Weida