Patents by Inventor Timothy I. Morrow

Timothy I. Morrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150292320
    Abstract: A system for downhole telemetry employs a series of communications nodes spaced along a tubular body such as a pipe in a wellbore. The nodes allow for hybrid wired-and-wireless communication between one or more sensors residing at the level of a subsurface formation, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication partially up a wellbore, and then high speed data transmission using a wire for the remaining distance up to the surface. A method of transmitting data in a wellbore uses a plurality of data transmission nodes situated along a tubular body to deliver wireless signals partially up the wellbore, and then wired signals the remaining distance.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 15, 2015
    Inventors: John M. Lynk, Timothy I. Morrow, Stuart R. Keller, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20150292321
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body in a wellbore. Each communications node is associated with a sensor that senses data indicative of a formation condition or a wellbore parameter along a subsurface formation. The data is stored in memory until a logging tool is run into the wellbore. The data is transmitted from the respective communications nodes to a receiver in the logging tool. The data is then transferred to the surface. A method of transmitting data in a wellbore is also provided herein. The method uses a logging tool to harvest data in a wellbore from a plurality of sensor communications nodes.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 15, 2015
    Inventors: Stuart R. KELLER, Timothy I. MORROW, James S. BURNS, Max DEFFENBAUGH, Mark M. DISKO, David A. STILES
  • Publication number: 20150285937
    Abstract: An electro-acoustic system for downhole telemetry employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes allow wireless communication between transceivers residing within the communications nodes and a receiver at the surface. The transceivers provide node-to-node communication of data indicating elastic waves generated as a result of the formation of subsurface fractures. The data is processed which generates a map of fracture geometry. A method of evaluating fracture geometry in a subsurface formation uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are analyzed which generates a subsurface map.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 8, 2015
    Inventors: Stuart R. Keller, Timothy I. Morrow, Max Deffenbaugh, Mark M. Disko, David A. Stiles
  • Publication number: 20150285065
    Abstract: An electro-acoustic system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a string of casing within a wellbore. The nodes are placed within the annular region surrounding the joints of casing within the well-bore. The nodes allow for wireless communication between transceivers residing within the communications nodes and a topside communications node at the wellhead. More specifically, the transceivers provide for node-to-node communication up a wellbore at high data transmission rates for data indicative of a parameter within an annular region behind the string of casing. A method of evaluating a parameter within an annular region along a cased-hole wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along the casing string which send signals to a receiver at the surface. The signals are then analyzed.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 8, 2015
    Inventors: David A. Howell, Timothy I. Morrow, Mark M. Disko, Max Deffenbaugh
  • Publication number: 20150275657
    Abstract: A system for downhole telemetry is provided herein. The system employs a series of communications nodes spaced along a tubular body either above or below ground, such as in a wellbore. The nodes allow for wireless communication between one or more sensors residing at the level of a subsurface formation or along a pipeline, and a receiver at the surface. The communications nodes employ electro-acoustic transducers that provide for node-to-node communication along the tubular body at high data transmission rates. A method of transmitting data in a wellbore is also provided herein. The method uses a plurality of data transmission nodes situated along a tubular body to accomplish a wireless transmission of data along the wellbore using acoustic energy.
    Type: Application
    Filed: December 18, 2013
    Publication date: October 1, 2015
    Inventors: Max Deffenbaugh, Stuart R. Keller, David A. Stiles, Timothy I. Morrow, Mark M. Disko, Henry Alan Wolf, Katie M. Walker, Scott W. Clawson
  • Publication number: 20150176388
    Abstract: Systems and methods for stimulating a subterranean formation. The methods may include flowing, with a carrier fluid stream, an autonomous perforation device within a casing conduit that is defined by a casing string that extends within a subterranean formation. The methods further may include retaining the autonomous perforation device within a target region of the casing conduit, flowing a stimulant fluid within the casing conduit and past the autonomous perforation device, and/or stimulating, with the stimulant fluid stream, a portion of the subterranean formation that is downhole from the autonomous perforation device. The systems may include the autonomous perforation device, which may include a perforation assembly, a motion-arresting assembly, and a fluid flow conduit. The systems also may include a hydrocarbon well that includes a wellbore, the casing string, and the autonomous perforation device.
    Type: Application
    Filed: November 3, 2014
    Publication date: June 25, 2015
    Inventors: Randy C. Tolman, Timothy I. Morrow, Eric R. Grueschow
  • Publication number: 20150060056
    Abstract: Systems and methods for restricting fluid flow in a casing conduit, including a wellbore that extends within a subterranean formation, a casing string that extends within the wellbore and defines a portion of the casing conduit, a plurality of motion-arresting structures that project from an inner surface of the casing string to define a plurality of reduced-area regions of the casing conduit, and an autonomous sealing device that defines a contracted configuration and an expanded configuration. The methods include conveying the autonomous sealing device through the casing conduit, determining that the autonomous sealing device is located within a target portion of the casing conduit, expanding the autonomous sealing device to the expanded configuration, retaining the autonomous sealing device on a selected motion-arresting structure, and restricting fluid flow within the casing conduit with the autonomous sealing device.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 5, 2015
    Inventors: Krishnan Kumaran, Randy C. Tolman, Renzo M. Angeles Boza, Timothy I. Morrow, Eric R. Grueschow