Patents by Inventor Timothy J. Cunningham

Timothy J. Cunningham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11852517
    Abstract: A method for detecting a deviation in a flow meter parameter is provided. The method includes measuring a flow tube temperature in a plurality of locations; and calculating a temperature gradient based on the measured temperatures. The method also includes detecting a deviation in the flow meter parameter if the calculated temperature gradient exceeds a temperature gradient threshold.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: December 26, 2023
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten
  • Publication number: 20230243691
    Abstract: A meter electronics (20) for detecting and identifying a change in a vibratory meter (5) is provided. The meter electronics (20) includes a processing system (202) including a storage system (204) configured to store a central tendency value of a meter verification parameter and dispersion value of the meter verification parameter. The processing system (202) is configured to obtain the central tendency value and the dispersion value from the storage system (204) and determine a probability based on the central tendency value and the dispersion value to detect if the central tendency value is different than a baseline value.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 3, 2023
    Applicant: MICRO MOTION, INC.
    Inventors: Timothy J. CUNNINGHAM, Andrew Timothy PATTEN, Mark James BELL
  • Patent number: 11668597
    Abstract: A meter electronics (20) and a method for detecting and identifying a change in a vibratory meter (5) is provided. The meter electronics (20) includes an interface (201) configured to receive sensor signals (100) from a meter assembly (10) and provide information based on the sensor signals (100) and a processing system (202) communicatively coupled to the interface (201). The processing system (202) is configured to use the information to determine a first stiffness change (244) associated with a first location of a conduit (130, 130?) of the vibratory meter (5), determine a second stiffness change (254) associated with a second location of the conduit (130, 130?) of the vibratory meter (5), and determine a condition of the conduit (130, 130?) based on the first stiffness change and the second stiffness change.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: June 6, 2023
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten, Mark James Bell
  • Publication number: 20220390267
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 8, 2022
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David J. Kapolnek, Matthew J. Rensing, Christopher George Larsen
  • Patent number: 11493374
    Abstract: A system (800) for minimizing a crest in a multi-tone drive signal in a vibratory meter (5) is provided. The system (800) includes a drive signal generator (810) configured to generate the multi-tone drive signal for the vibratory meter (5) and a drive signal detector (820). The drive signal detector (820) is configured to receive the multi-tone drive signal, determine a first maximum amplitude of the multi-tone drive signal having a component at a first phase, determine a second maximum amplitude of the multi-tone drive signal having the component at a second phase, and compare the first maximum amplitude and the second maximum amplitude.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: November 8, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Matthew Joseph Rensing, Mark James Bell
  • Patent number: 11473961
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 18, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J Cunningham, David J Kapolnek, Matthew J Rensing, Christopher George Larsen
  • Publication number: 20220326060
    Abstract: A method for detecting a deviation in a flow meter parameter is provided. The method includes measuring a flow tube temperature in a plurality of locations; and calculating a temperature gradient based on the measured temperatures. The method also includes detecting a deviation in the flow meter parameter if the calculated temperature gradient exceeds a temperature gradient threshold.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, Andrew Timothy PATTEN
  • Patent number: 11415447
    Abstract: A method for detecting a deviation in a flow meter parameter is provided. The method includes measuring a differential pressure across at least a portion of the flow meter, calculating a friction factor based on a measured flow rate and the measured differential pressure. The method also includes comparing the calculated friction factor to an expected friction factor based on the measured flow rate and detecting a deviation in the flow meter parameter if the difference between the calculated friction factor and the expected friction factor exceeds a threshold limit.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: August 16, 2022
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten
  • Patent number: 11209299
    Abstract: A meter electronics (20) having a notch filter (26) configured to filter a sensor signal from a sensor assembly (10) in a vibratory meter (5) is provided. The meter electronics (20) includes the notch filter (26) communicatively coupled to the sensor assembly (10). The meter electronics (20) is configured to receive the sensor signal from the sensor assembly (10), the sensor signal being comprised of a first component at a resonant frequency of the sensor assembly (10) and a second component at a non-resonant frequency and pass the first component and substantially attenuate the second component with the notch filter, wherein the first component is passed with substantially zero phase shift.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: December 28, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Timothy J. Cunningham
  • Patent number: 11169016
    Abstract: A system (600) and method (500) for a standards traceable verification of a vibratory meter (5) is provided. The system (600) includes a storage (610) having a baseline meter verification value of the vibratory meter and a processing system (620) in communication with the storage (610). The processing system (620) being configured to obtain the baseline meter verification value from the storage (610) and determine a relationship between the baseline meter verification value and a calibration value of the vibratory meter, said calibration value being traceable to a measurement standard. The method (500) provides a traceable verification of a vibratory meter by comparing (540) a physical property of the vibratory meter, which is determined from a first calibration value, to a reference value determined from a second calibration value, said calibration values being traceable to a measurement standard.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 9, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, Andrew Timothy Patten, Dean M. Standiford
  • Patent number: 11169013
    Abstract: A system (800) for determining frequency spacings to prevent intermodulation distortion signal interference is provided. The system (800) includes a sensor assembly (810) and a meter verification module (820) communicatively coupled to the sensor assembly (810). The meter verification module (820) is configured to determine a frequency of a first signal to be applied to a sensor assembly (810) of a vibratory meter and set a demodulation window about the frequency of the first signal. The meter verification module (800) is also configured to determine a frequency of the second signal to be applied to the sensor assembly such that a frequency of an intermodulation distortion signal generated by the first signal and the second signal is outside the demodulation window.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: November 9, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Timothy J. Cunningham
  • Patent number: 11029183
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) configured to vibrate the flowmeter assembly (10) in a primary vibration mode using the first and second drivers (180L, 180R), determine first and second primary mode currents (230) of the first and second drivers (180L, 180R) for the primary vibration mode and determining first and second primary mode response voltages (231) generated by the first and second pickoff sensors (170L, 170R) for the primary vibration mode, generate a meter stiffness value (216) using the first and second primary mode currents (230) and the first and second primary mode response voltages (231), and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216).
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: June 8, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Christopher George Larsen, Timothy J. Cunningham
  • Publication number: 20210080312
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. Cunningham, David J. Kapolnek, Matthew J. Rensing, Christopher George Larsen
  • Patent number: 10890479
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) coupled to the first and second pickoff sensors (170L, 170R) and coupled to a driver (180), with the meter electronics (20) configured to: vibrate the flowmeter assembly (10) in a single mode using the driver (180), determine a single mode current (230) of the driver (180) and determine first and second response voltages (231) generated by the first and second pickoff sensors (170L, 170R), respectively, compute frequency response functions for the determined first and second response voltages (231) from the determined single mode current (230), fit the generated frequency response functions to a pole-residue model, and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216), residual flexibility (218), and the meter mass (240) in embodiments.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: January 12, 2021
    Assignee: Micro Motion, Inc.
    Inventors: Timothy J Cunningham, David J Kapolnek, Matthew J Rensing, Christopher George Larsen
  • Publication number: 20200355542
    Abstract: A meter electronics (20) and a method for detecting and identifying a change in a vibratory meter (5) is provided. The meter electronics (20) includes an interface (201) configured to receive sensor signals (100) from a meter assembly (10) and provide information based on the sensor signals (100) and a processing system (202) communicatively coupled to the interface (201). The processing system (202) is configured to use the information to determine a first stiffness change (244) associated with a first location of a conduit (130, 130?) of the vibratory meter (5), determine a second stiffness change (254) associated with a second location of the conduit (130, 130?) of the vibratory meter (5), and determine a condition of the conduit (130, 130?) based on the first stiffness change and the second stiffness change.
    Type: Application
    Filed: August 30, 2017
    Publication date: November 12, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, Andrew Timothy PATTEN, Mark James BELL
  • Patent number: 10788348
    Abstract: A method and apparatus for a flowmeter (5) is provided. The method comprises the steps of placing a material in a flow tube (130, 130?) while exciting a vibration mode of the flow tube (130, 130?). Exciting the vibration mode of the flow tube (130, 130?) comprises the steps of periodically driving a first driver (180L) with a first signal and periodically driving a second driver (180R) with a second signal, wherein the second driver (180R) is driven essentially in phase with the first driver (180L), but wherein the first driver's (180L) drive amplitude modulated signal reaches a maximum amplitude when the second driver's (180R) drive modulated signal reaches a minimal amplitude, and the first driver's (180L) drive amplitude modulated signal reaches a minimum amplitude when the second driver's (180R) drive amplitude modulated signal reaches a maximum amplitude.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: September 29, 2020
    Assignee: Micro Motion, Inc.
    Inventors: Matthew Joseph Rensing, Christopher George Larsen, Timothy J. Cunningham, Stuart J. Shelley
  • Publication number: 20200249071
    Abstract: A system (600) and method (500) for a standards traceable verification of a vibratory meter (5) is provided. The system (600) includes a storage (610) having a baseline meter verification value of the vibratory meter and a processing system (620) in communication with the storage (610). The processing system (620) being configured to obtain the baseline meter verification value from the storage (610) and determine a relationship between the baseline meter verification value and a calibration value of the vibratory meter, said calibration value being traceable to a measurement standard. The method (500) provides a traceable verification of a vibratory meter by comparing (540) a physical property of the vibratory meter, which is determined from a first calibration value, to a reference value determined from a second calibration value, said calibration values being traceable to a measurement standard.
    Type: Application
    Filed: August 30, 2017
    Publication date: August 6, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, Andrew Timothy PATTEN, Dean M. STANDIFORD
  • Publication number: 20200166395
    Abstract: A system (800) for minimizing a crest in a multi-tone drive signal in a vibratory meter (5) is provided. The system (800) includes a drive signal generator (810) configured to generate the multi-tone drive signal for the vibratory meter (5) and a drive signal detector (820). The drive signal detector (820) is configured to receive the multi-tone drive signal, determine a first maximum amplitude of the multi-tone drive signal having a component at a first phase, determine a second maximum amplitude of the multi-tone drive signal having the component at a second phase, and compare the first maximum amplitude and the second maximum amplitude.
    Type: Application
    Filed: June 14, 2017
    Publication date: May 28, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Timothy J. CUNNINGHAM, Matthew Joseph RENSING, Mark James BELL
  • Publication number: 20200149942
    Abstract: A meter electronics (20) having a notch filter (26) configured to filter a sensor signal from a sensor assembly (10) in a vibratory meter (5) is provided. The meter electronics (20) includes the notch filter (26) communicatively coupled to the sensor assembly (10). The meter electronics (20) is configured to receive the sensor signal from the sensor assembly (10), the sensor signal being comprised of a first component at a resonant frequency of the sensor assembly (10) and a second component at a non-resonant frequency and pass the first component and substantially attenuate the second component with the notch filter, wherein the first component is passed with substantially zero phase shift.
    Type: Application
    Filed: June 14, 2017
    Publication date: May 14, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Matthew Joseph RENSING, Timothy J. CUNNINGHAM
  • Publication number: 20200132529
    Abstract: A vibratory flowmeter (5) for meter verification is provided, including meter electronics (20) configured to vibrate the flowmeter assembly (10) in a primary vibration mode using the first and second drivers (180L, 180R), determine first and second primary triode currents (230) of the first and second drivers (180L, 180R) for the primary vibration mode and determining first and second primary mode response voltages (231) generated by the first and second pickoff sensors (170L, 170R) for the primary vibration mode, generate a meter stiffness value (216) using the first and second primary mode currents (230) and the first and second primary mode response voltages (231), and verify proper operation of the vibratory flowmeter (5) using the meter stiffness value (216).
    Type: Application
    Filed: January 2, 2020
    Publication date: April 30, 2020
    Applicant: Micro Motion, Inc.
    Inventors: Matthew Joseph RENSING, Christopher George LARSEN, Timothy J. CUNNINGHAM