Patents by Inventor Timothy M. Hollis

Timothy M. Hollis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7869494
    Abstract: One or more embodiments of the invention comprise a continuous-time equalizer (CTE) for reducing both pre-cursor and post-cursor intersymbol interference (ISI) from data received from a communication channel. One such equalizer comprises two independent stages that process the input signal in parallel. One stage subtracts a scaled version of the derivative of the input signal from a scaled version of the input signal to reduce pre-cursor ISI from the input signal. The other stage adds a scaled version of the derivative of the input signal to a scaled version of the input signal to reduce post-cursor ISI from the input signal. The outputs from the two stages are then multiplied to arrive at an output signal in which both pre- and post-cursor ISI is minimized. Because the scalars used in each of the stages are independent, each can be adjusted for greater manipulation of the ISI-reduced signal.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: January 11, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20100283503
    Abstract: Devices and methods for operating devices are provided, such as those that include a memory device having a reference voltage (Vref) circuit that has substantially similar paths and impedances as an on-die termination (ODT) circuit. One such Vref circuit tracks supply variations and temperature changes in a manner substantially similar to the ODT circuit. In some embodiments an update scheme is provide for the ODT circuit and the Vref circuit to enable simultaneous update of each circuit through the same digital codes.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Patent number: 7821108
    Abstract: Methods and circuitry for lowering the capacitance of interconnects, particularly Through Wafer Interconnects (TWIs), using signal level adjustment are disclosed. Embodiments of the invention seek to bias the midpoint voltage level of the signals on the TWIs towards inversion, where at high frequencies capacitance is at its minimum. In one embodiment, reduced swing signals are used for the data states transmitted across the TWIs, in which the reduced swing signals use a midpoint voltage level tending to bias the TWI capacitance towards inversion. In another embodiment, signals are AC coupled to the TWI where they are referenced to an explicit bias voltage directly connected to the TWI. This allows signals to propagate through the TWI while the TWI is biased towards inversion. In a third embodiment, the potential of the substrate is explicitly lowered with respect to the TWI potential.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: October 26, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20100231260
    Abstract: A receiver for receiving a reduced swing signal from a transmission channel is disclosed, in which the swing of the reduced swing signal is less than the power supply of the receiver and possibly is less than the power supply of the transmitter. The receiver comprises a level shifter for offsetting the reduced swing signal, and an amplifier which receives both the reduced swing signal and its offset to produce a full swing signal output referenced to the power supply of the receiver. The full swing signal can thereafter be buffered, and eventually can be captured by a clock. Optionally, the disclosed reduced swing receiver also contains calibration circuitry for improving the integrity of the full swing signal output, and in particular for countering the effects of process, and in some embodiments temperature, variations, which alter the characteristics of the transistors which make up the receiver circuitry.
    Type: Application
    Filed: May 25, 2010
    Publication date: September 16, 2010
    Applicant: Micron Technology, Inc.
    Inventors: Timothy M. Hollis, Bruce W. Schober
  • Publication number: 20100214138
    Abstract: A method and apparatus for balancing an output load using data bus inversion is disclosed. In brief, one such technique comprises measuring the “balance” of data bits across a data bus (e.g., the number of zero values compared to the number of one values in a set of parallel data bits). If the data bits are unbalanced by a specified amount, a portion of the bits on the data bus are inverted, and the data bits, including the inverted portion, are transmitted. Also, a data bus inversion bit is set to a particular value and transmitted with the data bits to indicate that data bus inversion was used. If the data signal is not unbalanced (i.e., the bits on the data bus do not comprise an unbalanced number of logic values), then the bits on the data bus are transmitted as they are detected, and the data bus inversion bit is set to another particular value to indicate that data bus inversion was not used.
    Type: Application
    Filed: March 2, 2010
    Publication date: August 26, 2010
    Applicant: Round Rock Research. LLC
    Inventor: Timothy M. Hollis
  • Publication number: 20100198575
    Abstract: Methods for generating realistic waveforms with controllable voltage noise and timing jitter in a computer-based simulation environment and the simulation of a subset of those waveforms with system elements along the signal path is disclosed. By deriving a generic, re-useable, parameterized Fourier series, time-domain clock and pseudo-random data signals are generated from a subset of their true harmonic components. Time-domain signal parameters including high, low, and common-mode voltage levels, transition slew-rates, transition timing, period and/or frequency, may be designated by the user, and the computer calculates the harmonic components that will combine through the inverse Fourier transform to provide the required time-domain characteristics. By computing the frequency content of the signal directly it is possible to simulate the interaction of the signal with various system blocks while remaining in the frequency domain, thereby reducing simulation time and memory requirements.
    Type: Application
    Filed: April 6, 2010
    Publication date: August 5, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20100199017
    Abstract: Implementations of encoding techniques are disclosed. The encoding technique, such as a Data bus Inversion (DBI) technique, is implementable in a vertically-stacked memory module, but is not limited thereto. The module can be a plurality of memory integrated circuits which are vertically stacked, and which communicate via a bus formed in one embodiment of channels comprising Through-Wafer Interconnects (TWIs), but again is not limited thereto. One such module includes spare channels that are normally used to reroute a data signal on the bus away from faulty data channels. In one disclosed technique, the status of a spare channel or channels is queried, and if one or more are unused, they can be used to carry a DBI bit, thus allowing at least a portion of the bus to be assessed in accordance with a DBI algorithm. Depending on the location and number of spare channels needed for rerouting, DBI can be apportioned across the bus in various manners.
    Type: Application
    Filed: February 5, 2009
    Publication date: August 5, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20100188058
    Abstract: An improved reference voltage (Vref) generator useable, for example, in sensing data on single-ended channels is disclosed. The Vref generator can be placed on the integrated circuit containing the receivers, or may be placed off chip. In one embodiment, the Vref generator comprises an adjustable-resistance voltage divider in combination with a current source. The voltage divider is referenced to I/O power supplies Vddq and Vssq, with Vref being generated at a node intervening between the adjustable resistances of the voltage divider. The current source injects a current into the Vref node and into a non-varying Thevenin equivalent resistance formed of the same resistors used in the voltage divider. So constructed, the voltage generated equals the sum of two terms: a first term comprising the slope between Vref and Vddq, and a second term comprising a Vref offset.
    Type: Application
    Filed: January 24, 2009
    Publication date: July 29, 2010
    Inventors: Dragos Dimitriu, Timothy M. Hollis
  • Patent number: 7741873
    Abstract: A receiver for receiving a reduced swing signal from a transmission channel is disclosed, in which the swing of the reduced swing signal is less than the power supply of the receiver and possibly is less than the power supply of the transmitter. The receiver comprises a level shifter for offsetting the reduced swing signal, and an amplifier which receives both the reduced swing signal and its offset to produce a full swing signal output referenced to the power supply of the receiver. The full swing signal can thereafter be buffered, and eventually can be captured by a clock. Optionally, the disclosed reduced swing receiver also contains calibration circuitry for improving the integrity of the full swing signal output, and in particular for countering the effects of process, and in some embodiments temperature, variations, which alter the characteristics of the transistors which make up the receiver circuitry.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 22, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Timothy M. Hollis, Bruce W. Schober
  • Publication number: 20100127758
    Abstract: Apparatus are disclosed, such as those involving a 3-D integrated circuit. One such apparatus includes a first die including a plurality of vertical connectors formed therethrough. The apparatus also includes a first circuit configured to encode multiple data bits into a multi-bit symbol, and provide the multi-bit symbol to two or more of the vertical connectors. The apparatus further includes a second circuit configured to receive the multi-bit symbol from at least one of the two or more vertical connectors, and decode the multi-bit symbol into the multiple data bits. The apparatus provides enhanced repairability with no or less redundant vertical connectors, thus avoiding the need for “on the fly” or field repair of defective vertical connectors.
    Type: Application
    Filed: November 25, 2008
    Publication date: May 27, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Patent number: 7720654
    Abstract: Methods for generating realistic waveforms with controllable voltage noise and timing jitter in a computer-based simulation environment and the simulation of a subset of those waveforms with system elements along the signal path is disclosed. By deriving a generic, re-useable, parameterized Fourier series, time-domain clock and pseudo-random data signals are generated from a subset of their true harmonic components. Time-domain signal parameters including high, low, and common-mode voltage levels, transition slew-rates, transition timing, period and/or frequency, may be designated by the user, and the computer calculates the harmonic components that will combine through the inverse Fourier transform to provide the required time-domain characteristics. By computing the frequency content of the signal directly it is possible to simulate the interaction of the signal with various system blocks while remaining in the frequency domain, thereby reducing simulation time and memory requirements.
    Type: Grant
    Filed: October 14, 2006
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20100102853
    Abstract: Disclosed herein are circuitry and methods for transmitting data across a parallel bus using both high common mode and low common mode signaling. The transmitter stages are configured to work with two of three possible power supply voltages: a high Vddq voltage, a low Vssq voltage, and an intermediate Vx voltage. In one embodiment, the odd numbered transmitter stages, that drive the odd numbered outputs to the bus, use the Vddq and Vx supplies, such that the odd numbered outputs comprise high common mode signals. The even numbered transmitter stages, that drive the even numbered outputs to the bus, use the Vx and Vssq supplies, such that the even numbered outputs comprise low common mode signals. With the transmitter and power supplies so configured, no one of the three power supplies must source or sink current to or from more than half of the transmitters at any given time, which reduces power supply loading and minimizes switching noise.
    Type: Application
    Filed: October 28, 2008
    Publication date: April 29, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Patent number: 7701368
    Abstract: A method and apparatus for balancing an output load using data bus inversion is disclosed. In brief, one such technique comprises measuring the “balance” of data bits across a data bus (e.g., the number of zero values compared to the number of one values in a set of parallel data bits). If the data bits are unbalanced by a specified amount, a portion of the bits on the data bus are inverted, and the data bits, including the inverted portion, are transmitted. Also, a data bus inversion bit is set to a particular value and transmitted with the data bits to indicate that data bus inversion was used. If the data signal is not unbalanced (i.e., the bits on the data bus do not comprise an unbalanced number of logic values), then the bits on the data bus are transmitted as they are detected, and the data bus inversion bit is set to another particular value to indicate that data bus inversion was not used.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: April 20, 2010
    Assignee: Round Rock Research, LLC
    Inventor: Timothy M. Hollis
  • Publication number: 20100001789
    Abstract: Methods and circuitry for lowering the capacitance of interconnects, particularly Through Wafer Interconnects (TWIs), using signal level adjustment are disclosed. Embodiments of the invention seek to bias the midpoint voltage level of the signals on the TWIs towards inversion, where at high frequencies capacitance is at its minimum. In one embodiment, reduced swing signals are used for the data states transmitted across the TWIs, in which the reduced swing signals use a midpoint voltage level tending to bias the TWI capacitance towards inversion. In another embodiment, signals are AC coupled to the TWI where they are referenced to an explicit bias voltage directly connected to the TWI. This allows signals to propagate through the TWI while the TWI is biased towards inversion. In a third embodiment, the potential of the substrate is explicitly lowered with respect to the TWI potential.
    Type: Application
    Filed: July 4, 2008
    Publication date: January 7, 2010
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20090313521
    Abstract: Implementations of Data Bus Inversion (DBI) techniques within a memory system are disclosed. In one embodiment, a set of random access memory (RAM) integrated circuits (ICs) is separated from a logic system by a bus. The logic system can contain many of the logic functions traditionally performed on conventional RAM ICs, and accordingly the RAM ICs can be modified to not include such logic functions. The logic system, which can be a logic integrated circuit intervening between the modified RAM ICs and a traditional memory controller, additionally contains DBI encoding and decoding circuitry. In such a system, data is DBI encoded and at least one DBI bit issued when writing to the modified RAM ICs. The RAM ICs in turn store the DBI bit(s) with the encoded data. When the encoded data is read from the modified RAM ICs, it is transmitted across the bus in its encoded state along with the DBI bit(s). The logic integrated circuit then decodes the data using the DBI bit(s) to return it to its original state.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 17, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: TIMOTHY M. HOLLIS
  • Publication number: 20090261859
    Abstract: A receiver for receiving a reduced swing signal from a transmission channel is disclosed, in which the swing of the reduced swing signal is less than the power supply of the receiver and possibly is less than the power supply of the transmitter. The receiver comprises a level shifter for offsetting the reduced swing signal, and an amplifier which receives both the reduced swing signal and its offset to produce a full swing signal output referenced to the power supply of the receiver. The full swing signal can thereafter be buffered, and eventually can be captured by a clock. Optionally, the disclosed reduced swing receiver also contains calibration circuitry for improving the integrity of the full swing signal output, and in particular for countering the effects of process, and in some embodiments temperature, variations, which alter the characteristics of the transistors which make up the receiver circuitry.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: TIMOTHY M. HOLLIS, BRUCE W. SCHOBER
  • Publication number: 20090247088
    Abstract: Apparatus and methods are disclosed, such as those involving data transmission. One such apparatus includes a transmitter, a receiver, and a channel. The transmitter includes a pair of current sources and a pair of switches. Each of the pair of switches conducts one of the current sources to the channel in response to input data. The receiver includes a first node configured to receive a signal over the channel, and a second node. The receiver also includes a resistance generating a voltage drop between the first node and the second node. The receiver further includes a first transistor of a first type and a second transistor of a second type. The first and second transistors are together configured to provide a voltage level to the second node based at least partly on the voltage drop. The resistance provides a negative feedback to center the mean signal level, thereby reducing intersymbol interference.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 1, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20090238300
    Abstract: Apparatus are disclosed, such as those involving a transmitter circuit that is configured to generate multi-level signals based on a plurality of data digits. One such transmitter circuit includes a signal output and an encoder configured to provide control signals based at least partially on the plurality of data digits. The transmitter circuit also includes a first set of switches configured to receive one or more of the control signals, and to selectively conduct a first or second voltage reference to the signal output. The transmitter circuit further includes first and second voltage drop circuits that provide third and fourth voltage references, respectively. The third and fourth voltage references have voltage levels between those of the first and second voltage references. The transmitter circuit also includes a second set of switches configured to receive one or more of the control signals, and selectively conduct the third or fourth voltage reference to the signal output.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20090239559
    Abstract: Methods and apparatus are disclosed, such as those involving mixed-mode signaling that includes transmitting a differential signal and a common mode signals over the same pair of interconnect traces. One such apparatus includes a first transmitter configured to transmit a differential signal through a pair of electrically conductive lines in a first direction. The differential signal has a first frequency and carries electronic data. The apparatus further includes a second transmitter configured to transmit a common mode signal through the pair of electrically conductive lines in the first direction. The common mode signal is superimposed onto each of the differential signal. The common mode signal has a second frequency that is lower than the first frequency and carries a control signal. This configuration reduces the number of lines and pins on electronic circuits, thereby saving space thereon.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis
  • Publication number: 20090179782
    Abstract: A method and apparatus for balancing an output load using data bus inversion is disclosed. In brief, one such technique comprises measuring the “balance” of data bits across a data bus (e.g., the number of zero values compared to the number of one values in a set of parallel data bits). If the data bits are unbalanced by a specified amount, a portion of the bits on the data bus are inverted, and the data bits, including the inverted portion, are transmitted. Also, a data bus inversion bit is set to a particular value and transmitted with the data bits to indicate that data bus inversion was used. If the data signal is not unbalanced (i.e., the bits on the data bus do not comprise an unbalanced number of logic values), then the bits on the data bus are transmitted as they are detected, and the data bus inversion bit is set to another particular value to indicate that data bus inversion was not used.
    Type: Application
    Filed: February 16, 2009
    Publication date: July 16, 2009
    Applicant: Micron Technology, Inc.
    Inventor: Timothy M. Hollis