Patents by Inventor Timothy Ringeisen

Timothy Ringeisen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100330181
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Emme M. Castiglione-Dodd, Gino Bradioa, Ali Ebrahiml, Timothy A. Ringeisen
  • Publication number: 20100331998
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventor: Timothy A. Ringeisen
  • Publication number: 20100331979
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Robert L. McDade, Timothy A. Ringeisen
  • Publication number: 20100331865
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Gino Bradica, William Christian Wattengel, Timothy A. Ringeisen
  • Publication number: 20100305712
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: May 24, 2010
    Publication date: December 2, 2010
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Publication number: 20100278891
    Abstract: A high strength porous biphasic polymeric reinforcement material manufactured by a compression and/or sintering process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: October 9, 2009
    Publication date: November 4, 2010
    Inventors: Timothy A. Ringeisen, Robert L. Mcdade
  • Patent number: 7723395
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 25, 2010
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, Amanda Turner, Joseph DeMeo, Patrick E. Hearn, Robert L. McDade
  • Publication number: 20090175944
    Abstract: The invention concerns a dried form of a porous polymer gel material which may be rehydrated and placed under pressure or compression to induce salvation, thereby forming a high concentration gel, in the form of an injectable viscous putty or dough, which may be implantated in the body.
    Type: Application
    Filed: December 15, 2008
    Publication date: July 9, 2009
    Inventors: Timothy A. Ringeisen, William Christian Wattengel
  • Publication number: 20070202148
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.
    Type: Application
    Filed: April 27, 2007
    Publication date: August 30, 2007
    Inventors: Timothy Ringeisen, William Wattengel
  • Patent number: 7214765
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: May 8, 2007
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, William Christian Wattengel
  • Publication number: 20060217753
    Abstract: Improved coring devices suitable for articular cartilage and bone, wherein the cutting device is capable of slicing through a tough protective tangential zone, delicately separating the shock absorbing columns of cells in the radial zone of the cartilage, and finally cutting into the hard underlying bone in a manner that preserves the viability of osteochondral cells. The coring device features an annulus having a flat annular cutting edge interrupted by at least one serration having neutral cutting angles. A method for concurrently removing cartilaginous and bony tissue using an improved coring device that preserves the viability of osteochondral cells.
    Type: Application
    Filed: February 17, 2006
    Publication date: September 28, 2006
    Inventors: Gino Bradica, Timothy Ringeisen
  • Publication number: 20060173476
    Abstract: Improved coring devices suitable for articular cartilage and bone, wherein the cutting device is capable of slicing through a tough protective tangential zone, delicately separating the shock absorbing columns of cells in the radial zone of the cartilage, and finally cutting into the hard underlying bone in a manner that preserves the viability of osteochondral cells. The coring device features an annulus having a flat annular cutting edge interrupted by at least one serration having neutral cutting angles. A method for concurrently removing cartilaginous and bony tissue using an improved coring device that preserves the viability of osteochondral cells.
    Type: Application
    Filed: February 2, 2005
    Publication date: August 3, 2006
    Inventors: Gino Bradica, Timothy Ringeisen
  • Publication number: 20060002980
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.
    Type: Application
    Filed: July 8, 2005
    Publication date: January 5, 2006
    Inventors: Timothy Ringeisen, William Wattengel
  • Patent number: 6974862
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component (e.g., collagen, chitosan, alginate, hyaluronic acid, poly-lactic acid, poly-capralactone, and polyurethane) that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: December 13, 2005
    Assignee: Kensey Nash Corporation
    Inventors: Timothy A. Ringeisen, W. Christian Wattengel
  • Publication number: 20050246021
    Abstract: A high strength porous polymeric material manufactured by a compression process is disclosed. The material results in a network of interconnected collapsed pores, which forces thin overlapping walls and passages to be created. The network provides permeable access for fluid migration throughout the material. The strength and/or permeability are advantageous for medical devices and implants.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Inventors: Timothy Ringeisen, Amanda Turner, Joseph DeMeo, Patrick Hearn, Robert McDade
  • Publication number: 20050186240
    Abstract: The invention concerns a dried form of a porous polymer gel material which may be rehydrated and placed under pressure or compression to induce solvation, thereby forming a high concentration gel, in the form of an injectable viscous putty or dough, which may be implantated in the body.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 25, 2005
    Inventors: Timothy Ringeisen, William Wattengel
  • Publication number: 20050123581
    Abstract: An embodiment of the present invention may be made by the following steps: providing a mixture comprising a plurality of fibers, a lubricant, and a suspension fluid, with the suspension fluid filling a void space between said fibers and subjecting said mixture to at least one compressive force. The compressive force causes the migration and alignment of said fibers; and may remove substantially all of the suspension fluid from said mixture. The mixture may further comprise a biologically active agent, or a reinforcing agent.
    Type: Application
    Filed: December 4, 2003
    Publication date: June 9, 2005
    Inventors: Timothy Ringeisen, W. Wattengel
  • Publication number: 20050085817
    Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, consisting of a highly porous body, made from a polymer, the porous body having a plurality of pores, such that the device is capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, and the polymer fixation device is rigid enough to protect a tissue from shifting. Preferably, the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device consists of a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may feature additional materials which serve to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively the additional materials serve to deliver therapies to the living being.
    Type: Application
    Filed: September 14, 2004
    Publication date: April 21, 2005
    Inventor: Timothy Ringeisen
  • Publication number: 20050075408
    Abstract: Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second liquid is added to a polymer solution, the second liquid causing the solution to increase in viscosity. With sufficient polymer and second liquid present, the increase in viscosity can be up to that of a gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. A second material may be incorporated into the chambers, thereby creating a microstructure filling the voids of the macrostructure.
    Type: Application
    Filed: September 23, 2004
    Publication date: April 7, 2005
    Inventors: Timothy Ringeisen, Scott Goldman
  • Publication number: 20050015088
    Abstract: A bendable polymer tissue fixation device suitable to be implanted into a living body, comprising a highly porous body, the porous body comprising a polymer, the porous body comprising a plurality of pores, the porous body being capable of being smoothly bent, wherein the bending collapses a portion of the pores to form a radius curve, the polymer fixation device being rigid enough to protect a tissue from shifting. In a preferred embodiment the polymer fixation device may be capable of being gradually resorbed by said living body. In one embodiment, the polymer fixation device comprises a plurality of layers distinguishable by various characteristics, such as structural or chemical properties. In another embodiment, the polymer fixation device may comprise additional materials; the additional materials serving to reinforce or otherwise alter the structure or physical characteristics of the device, or alternatively as a method of delivering therapy or other agents to the system of a living being.
    Type: Application
    Filed: July 15, 2003
    Publication date: January 20, 2005
    Inventor: Timothy Ringeisen