Patents by Inventor Timothy Ringeisen

Timothy Ringeisen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040267354
    Abstract: Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second solvent is added to a polymer solution, the second solvent causing the solution to gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. A second polymer material may be incorporated into the chambers, thereby creating a microstructure filling the voids of the macrostructure. A porous polymeric body manufactured by this process may serve to deliver biologically active agents in a time-staged delivery manner, where differing drugs may be delivered over differing periods.
    Type: Application
    Filed: June 9, 2004
    Publication date: December 30, 2004
    Inventors: Timothy A. Ringeisen, Scott M. Goldman
  • Publication number: 20040259972
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component (e.g., collagen, chitosan, alginate, hyaluronic acid, poly-lactic acid, poly-capralactone, and polyurethane) that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Timothy A. Ringeisen, W. Christian Wattengel
  • Publication number: 20040219185
    Abstract: Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second solvent is added to a polymer solution, the second solvent causing the solution to gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. The present technique also enhances shape-making capability, for example, of bifurcated vascular grafts, which feature a common entrance region but two or more exit regions.
    Type: Application
    Filed: May 28, 2004
    Publication date: November 4, 2004
    Inventor: Timothy Ringeisen
  • Publication number: 20030086975
    Abstract: Porous polymers having a plurality of openings or chambers that are highly convoluted, with each chamber being defined by multiple, thin, flat partitions are produced by a new gel enhanced phase separation technique. In a preferred embodiment, a second solvent is added to a polymer solution, the second solvent causing the solution to gel. The gel can then be shaped as needed. Subsequent solvent extraction leaves the porous polymeric body of defined shape. The porous polymers have utility as medical prostheses, the porosity permitting ingrowth of neighboring tissue. The present technique also enhances shape-making capability, for example, of bifurcated vascular grafts, which feature a common entrance region but two or more exit regions.
    Type: Application
    Filed: November 8, 2001
    Publication date: May 8, 2003
    Inventor: Timothy Ringeisen
  • Patent number: 5935594
    Abstract: An improved method or process and device for treating and healing a bone void is disclosed, and in particular a method employing a surfactant for efficiently incorporating a biologically active agent into the interstices (voids or pares) of a porous hydrophobic biodegradable material wherein the biologically active agent is deposited on the internal surfaces defining the voids or pores of the biodegradable material. The biodegradable body or device, now containing surfactant and a biologically active agent in the body itself as well as on the external surfaces and the internal surfaces defining the voids or pores, is than applied into the bone void or cavity.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: August 10, 1999
    Assignee: THM Biomedical, Inc.
    Inventors: Timothy Ringeisen, John H. Brekke
  • Patent number: 5855608
    Abstract: An anatomically specific, bioresorbable, implant device for facilitating the healing of voids in bone, cartilage and soft tissue is disclosed. A preferred embodiment of using the implant device for facilitating the healing of a human joint lesion includes a cartilage region invested with an alginate microstructure joined with a subchondral bone region invested with a hyaluronan microstructure. The alginate selectively dispersed in the cartilage region enhances the environment for chondrocytes to grow articular cartilage. The hyaluronan selectively dispersed in the subchondral bone region enhances the environment for mesenchymal cells which migrate into that region's macrostructure and which differentiate into osteoblasts. The microstructures can be invested at varying concentrations in the regions. A hydrophobic barrier, strategically positioned within the subchondral bone region macrostructure, shields the chondrocytes from the oxygenated blood in subchondral cancellous bone.
    Type: Grant
    Filed: December 30, 1994
    Date of Patent: January 5, 1999
    Assignee: THM Biomedical, Inc.
    Inventors: John H. Brekke, Timothy Ringeisen
  • Patent number: 5736160
    Abstract: An improved method or process and device for treating and healing a bone void is disclosed, and in particular a method employing a surfactant for efficiently incorporating a biologically active agent into the interstices (voids or pores) of a porous hydrophobic biodegradable material wherein the biologically active agent is deposited on the internal surfaces defining the voids or pores of the biodegradable material. The biodegradable body or device, now containing surfactant and a biologically active agent in the body itself as well as on the external surfaces and the internal surfaces defining the voids or pores, is then applied into the bone void or cavity.
    Type: Grant
    Filed: April 26, 1996
    Date of Patent: April 7, 1998
    Assignee: THM Biomedical, Inc.
    Inventors: Timothy Ringeisen, John H. Brekke