Patents by Inventor Tinghong Tao

Tinghong Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7132150
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed of hydrocarbon polymers that are soluble or dispersible in polar media, capable of forming neutral or hydrophilic surfaces on porous ceramic supports, and completely vaporizable at moderate washcoat stabilization or catalyst activation temperatures.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 7, 2006
    Assignee: Corning Incorporated
    Inventors: Steven B. Ogunwumi, Odessa N. Petzold, Yuxin Tang, Tinghong Tao, Jianguo Wang, Raja R. Wusirika
  • Patent number: 7122612
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with cross-linked polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed by thermally cross-linking hydrocarbon polymers that are vaporizable at moderate washcoat stabilization or catalyst activation temperatures and being preferentially.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: October 17, 2006
    Assignee: Corning Incorporated
    Inventors: Tinghong Tao, Jianguo Wang
  • Publication number: 20050191480
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with cross-linked polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed by thermally cross-linking hydrocarbon polymers that are vaporizable at moderate washcoat stabilization or catalyst activation temperatures and being preferentially
    Type: Application
    Filed: February 27, 2004
    Publication date: September 1, 2005
    Inventors: Tinghong Tao, Jianguo Wang
  • Patent number: 6903051
    Abstract: The invention provides a monolithic catalyst support for hydrogenation and hydrotreating and in particular for selective hydrogenation of pyrolysis gasoline. The monolithic catalyst includes (i) a multicellular monolith body, preferably having a honeycomb structure, most preferably a honeycomb structure made of cordierite, the honeycomb structure having an inlet end, an outlet end, and a multiplicity of mutually adjoining cells extending along the length of the body from the inlet end to the outlet end, the cells being separated from one another by porous walls, and, (ii) a coating consisting of theta alumina synthesized in situ on the multicellular monolith body. The in situ theta alumina is strongly bonded with the multicellular monolith body and comprises at least 50% by weight of the washcoat layer, and preferably greater than 90% by weight.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: June 7, 2005
    Assignee: Corning Incorporated
    Inventors: Tinghong Tao, Jennifer M. Torns, Brian P. Usiak
  • Publication number: 20050037147
    Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed of hydrocarbon polymers that are soluble or dispersible in polar media, capable of forming neutral or hydrophilic surfaces on porous ceramic supports, and completely vaporizable at moderate washcoat stabilization or catalyst activation temperatures.
    Type: Application
    Filed: August 14, 2003
    Publication date: February 17, 2005
    Inventors: Steven Ogunwumi, Odessa Petzold, Yuxin Tang, Tinghong Tao, Jianguo Wang, Raja Wusirika
  • Publication number: 20040261384
    Abstract: A diesel particulate filter comprising a plugged, wall-flow honeycomb filter body composed of cordierite and having a plurality of parallel end-plugged cell channels traversing the body from a frontal inlet end to an outlet end thereof, wherein the filter exhibits a CTE (25-800° C.) of less than 13×10−7/° C., a bulk filter density of less than 0.60 g/cm3, a median pore diameter, d50, of less than 25 micrometers, a porosity and pore size distribution that satisfy the relationship Pm≦3.75, wherein Pm is equal to 10.2474{1/[(d50)2(% porosity/100)]}+0.0366183(d90)−0.00040119(d90)2+0.468815(100/% porosity)2+0.0297715(d50)+1.61639(d50−d10)/d50, wherein d10, and d90 are pore diameters at 10% and 90% of the pore size distribution on a volumetric basis, and d10<d50<d90. A method of making the same is also provided.
    Type: Application
    Filed: June 25, 2003
    Publication date: December 30, 2004
    Inventors: Gregory A. Merkel, Tinghong Tao
  • Publication number: 20040152593
    Abstract: A catalyst support for use in technologies (i.e., SCR and NOx adsorbers) which address the reduction of NOx from exhaust emissions of diesel and GDI engines. The catalyst support has a honeycomb body composed of a porous ceramic material, and a plurality of parallel cell channels traversing the body from a frontal inlet end to an outlet end thereof. The porous ceramic material is defined by a total porosity greater than 45 vol. %, and a network of interconnected pores with a narrow pore size distribution of pores having a median pore size greater than 5 micrometers but less than 20 micrometers. The catalyst support is capable of attaining higher catalyst loadings without a pressure drop penalty.
    Type: Application
    Filed: March 27, 2003
    Publication date: August 5, 2004
    Inventors: Willard A. Cutler, Tinghong Tao
  • Publication number: 20040072689
    Abstract: The invention provides a monolithic catalyst support for hydrogenation and hydrotreating and in particular for selective hydrogenation of pyrolysis gasoline. The monolithic catalyst includes (i) a multicellular monolith body, preferably having a honeycomb structure, most preferably a honeycomb structure made of cordierite, the honeycomb structure having an inlet end, an outlet end, and a multiplicity of mutually adjoining cells extending along the length of the body from the inlet end to the outlet end, the cells being separated from one another by porous walls, and, (ii) a coating consisting of theta alumina synthesized in situ on the multicellular monolith body. The in situ theta alumina is strongly bonded with the multicellular monolith body and comprises at least 50% by weight of the washcoat layer, and preferably greater than 90% by weight.
    Type: Application
    Filed: April 12, 2002
    Publication date: April 15, 2004
    Inventors: Tinghong Tao, Jennifer M. Torns, Brian P. Usiak
  • Patent number: 6673237
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50%. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.5.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Tinghong Tao
  • Publication number: 20030102253
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50 %. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 5, 2003
    Inventors: Wei Liu, Tinghong Tao
  • Patent number: 6455023
    Abstract: Carbon monolith-supported catalysts with high leach resistance used in catalytic applications involving strong acidic and basic conditions in a pH range of from 0 to 6.5 and from 7.5 to 14, are respectively described. The leach resistance of the catalyst system originates from strong interaction between the catalyst and the unsaturated valence of the carbon surface. In addition to surprisingly high resistance to leach out, the catalysts also have substantial differential advantages in catalyst performance: catalyst activity, selectivity, and stability.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 24, 2002
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Publication number: 20020122756
    Abstract: One aspect of the present invention is a furnace component comprising an inorganic material that is exposed to a gas stream comprising hydrocarbon compounds, wherein at least a portion of the exposed inorganic material comprises a catalyst that promotes a hydrocarbon reaction to produce an olefin. The inorganic material may be a glass, a glass-ceramic, or a ceramic and may be coated onto the inside wall of a hydrocarbon cracking reactor or may be used as particles, powder, beads, monoliths, or other structured forms. The glass-ceramic material may further comprise a catalyst that facilitates carbon gasification.
    Type: Application
    Filed: December 22, 2000
    Publication date: September 5, 2002
    Inventors: Thomas E. Paulson, Tinghong Tao, Jennifer M. Torns, Donald M. Trotter
  • Publication number: 20020029591
    Abstract: A class preform (30) for making optical waveguides has surface impurities such as silicon carbide or silicon nitride. The preform is drawn in a furnace (12) that is supplied with oxygen via a conduit (40). The oxygen causes the impurities to oxidize and not effect the strength of the fiber.
    Type: Application
    Filed: April 15, 1999
    Publication date: March 14, 2002
    Inventors: JAMES E. DICKINSON JR., G. SCOTT GLAESEMANN, JAMES A. SNIPES, TINGHONG TAO, DONALD J. WISSUCHEK JR.
  • Patent number: 6345519
    Abstract: In connection with drawing a fiber in a drawing portion of a drawing device having a refractory, oxide component, a method and apparatus provide an environment in the drawing portion that causes active oxidation of a refractory contaminant on a blank. The active oxidation of the refractory contaminant causes it to corrode away during drawing.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: February 12, 2002
    Assignee: Corning Incorporated
    Inventors: James E. Dickinson, Jr., G. Scott Glaesemann, James A. Snipes, Tinghong Tao, Donald J. Wissuchek, Jr.
  • Patent number: 6322879
    Abstract: A method of protecting metal bodies, such as components of a thermal cracking furnace, against formation of carbon deposits, and the furnace components so protected, the method comprising producing an adherent, seamless coat on the metal surface, the coating comprising a layer of combined metal oxides within the MgO.Cr2O3 system.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: November 27, 2001
    Assignee: Corning Incorporated
    Inventors: Ronald L. Stewart, Tinghong Tao
  • Patent number: 6303368
    Abstract: A device for use in processing of a liquid and/or gas stream. The device is made up of a monolithic structure having active powder for treating streams. The structure has an inlet end and an outlet end and a multiplicity of cells extending from inlet end to outlet end. The cells are separated from one another by porous walls, a portion of the total number of cells being plugged in a pattern such that a stream enters the device through the unplugged cells at the inlet end and passes through at least two porous walls and the active powder in-between, and thereafter passes out of the device through unplugged cells at the outlet end. The device finds use in a number of applications including ion exchange, adsorption, biological and chemical reactions, and catalytic applications.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: October 16, 2001
    Assignee: Corning Incorporated
    Inventors: Willard A. Cutler, Tinghong Tao
  • Patent number: 6258334
    Abstract: An activated carbon catalyst having sulfur dispersed homogeneously thereon, the sulfur being chemically bonded to the activated carbon. A method of making the catalyst involves forming an intimate mixture of a synthetic carbon precursor and a sulfur-containing material, curing the carbon precursor, carbonizing the carbon precursor, activating the carbonized carbon precursor to produce an activated carbon catalyst having sulfur chemically bonded to said activated carbon and uniformly dispersed thereon.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: July 10, 2001
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Patent number: 6248691
    Abstract: Mesoporous carbon and method of making involves forming a mixture of a high carbon-yielding carbon precursor that when carbonized yields greater than about 40% carbon on a cured basis, and an additive that can be catalyst metal and/or low carbon-yielding carbon precursor that when carbonized yields no greater than about 40% by weight carbon on a cured basis. When a catalyst metal is used, the amount of catalyst metal after the subsequent carbonization step is no greater than about 1 wt. % based on the carbon. The mixture is cured, and the carbon precursors are carbonized and activated to produce mesoporous activated carbon.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: June 19, 2001
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, David L. Hickman, Y. Lisa Peng, Tinghong Tao
  • Patent number: 6228803
    Abstract: Mesoporous carbon and method of making involves forming a mixture of a high carbon-yielding carbon precursor that when carbonized yields greater than about 40% carbon on a cured basis, and an additive that can be catalyst metal and/or low carbon-yielding carbon precursor that when carbonized yields no greater than about 40% by weight carbon on a cured basis. When a catalyst metal is used, the amount of catalyst metal after the subsequent carbonization step is no greater than about 1 wt. % based on the carbon. The mixture is cured, and the carbon precursors are carbonized and activated to produce mesoporous activated carbon.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 8, 2001
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, David L. Hickman, Y. Lisa Peng, Tinghong Tao
  • Patent number: 6227382
    Abstract: A cyst reduction water filter and a method and carafe system for using it, wherein the filter incorporates a cellular ceramic honeycomb filter element of a selectively plugged channel configuration wherein all water filtration paths traverse porous channel walls, the walls exhibiting open porosity characterized by a median pore diameter in the range of about 2-8 micrometers and with pores over 10 microns in diameter comprising not more than 10% of the open pore volume, and wherein the filter element has a primed water flux of at least 0.3 ml/min/cm3 under a water pressure of 0.3 psig.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: May 8, 2001
    Assignee: Corning Incorporated
    Inventors: Willard A. Cutler, Kishor P. Gadkaree, Tinghong Tao