Patents by Inventor Tobias A. Schaedler

Tobias A. Schaedler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124364
    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkacrylate, alkyl alkacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Zak C. ECKEL, Andrew P. NOWAK, Ashley M. DUSTIN, April R. RODRIGUEZ, Phuong BUI, Tobias A. SCHAEDLER
  • Publication number: 20240082913
    Abstract: Some variations provide a process for additive manufacturing of a nanofunctionalized metal alloy, comprising: providing a nanofunctionalized metal precursor containing metals and grain-refining nanoparticles; exposing a first amount of the nanofunctionalized metal precursor to an energy source for melting the precursor, thereby generating a first melt layer; solidifying the first melt layer, thereby generating a first solid layer; and repeating many times to generate a plurality of solid layers in an additive-manufacturing build direction. The additively manufactured, nanofunctionalized metal alloy has a microstructure with equiaxed grains.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: John H. MARTIN, Brennan YAHATA, Tobias A. SCHAEDLER, Jacob M. HUNDLEY
  • Publication number: 20240087780
    Abstract: Some variations provide a permanent-magnet structure comprising: a region having a plurality of magnetic domains and a region-average magnetic axis, wherein each of the magnetic domains has a domain magnetic axis that is substantially aligned with the region-average magnetic axis, and wherein the plurality of magnetic domains is characterized by an average magnetic domain size. Within the region, there is a plurality of metal-containing grains characterized by an average grain size, and each of the magnetic domains has a domain easy axis that is dictated by a crystallographic texture of the metal-containing grains. The region has a region-average easy axis based on the average value of the domain easy axis within that region. The region-average magnetic axis and the region-average easy axis form a region-average alignment angle that has a standard deviation less than 30° within the plurality of magnetic domains. Many permanent-magnet structures are disclosed herein.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Inventors: Brennan YAHATA, Eric CLOUGH, Christopher HENRY, Amber SUCICH, Darby LAPLANT, Tobias SCHAEDLER
  • Patent number: 11919085
    Abstract: Some variations provide a process for additive manufacturing of a nanofunctionalized metal alloy, comprising: providing a nanofunctionalized metal precursor containing metals and grain-refining nanoparticles; exposing a first amount of the nanofunctionalized metal precursor to an energy source for melting the precursor, thereby generating a first melt layer; solidifying the first melt layer, thereby generating a first solid layer; and repeating many times to generate a plurality of solid layers in an additive-manufacturing build direction. The additively manufactured, nanofunctionalized metal alloy has a microstructure with equiaxed grains.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 5, 2024
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Brennan Yahata, Tobias A. Schaedler, Jacob M. Hundley
  • Patent number: 11891341
    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkacrylate, alkyl alkacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate.
    Type: Grant
    Filed: May 30, 2020
    Date of Patent: February 6, 2024
    Assignee: HRL Laboratories, LLC
    Inventors: Zak C. Eckel, Andrew P. Nowak, Ashley M. Dustin, April R. Rodriguez, Phuong Bui, Tobias A. Schaedler
  • Patent number: 11862369
    Abstract: Some variations provide a permanent-magnet structure comprising: a region having a plurality of magnetic domains and a region-average magnetic axis, wherein each of the magnetic domains has a domain magnetic axis that is substantially aligned with the region-average magnetic axis, and wherein the plurality of magnetic domains is characterized by an average magnetic domain size. Within the region, there is a plurality of metal-containing grains characterized by an average grain size, and each of the magnetic domains has a domain easy axis that is dictated by a crystallographic texture of the metal-containing grains. The region has a region-average easy axis based on the average value of the domain easy axis within that region. The region-average magnetic axis and the region-average easy axis form a region-average alignment angle that has a standard deviation less than 30° within the plurality of magnetic domains. Many permanent-magnet structures are disclosed herein.
    Type: Grant
    Filed: June 26, 2021
    Date of Patent: January 2, 2024
    Assignee: HRL Laboratories, LLC
    Inventors: Brennan Yahata, Eric Clough, Christopher Henry, Amber Sucich, Darby Laplant, Tobias Schaedler
  • Publication number: 20230416160
    Abstract: Some variations provide a pre-ceramic matrix composite comprising: a precursor pre-ceramic matrix; reinforcing elements disposed within the precursor pre-ceramic matrix; and a compressible material disposed on the surface of the reinforcing elements and interposed between the reinforcing elements and the precursor pre-ceramic matrix. Other variations provide a ceramic matrix composite comprising: a ceramic matrix; reinforcing elements disposed within the ceramic matrix; and a compressed material disposed on the surface of the reinforcing elements and interposed between the reinforcing elements and the matrix. The coating of compressible material prevents cracking during processing because the coating absorbs stresses associated with volumetric shrinkage of the ceramic matrix during densification, thereby reducing the stresses at the interface between the reinforcing elements and the ceramic matrix. Methods of fabricating ceramic matrix composites using the principles of the invention are disclosed.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Inventors: Mark O'MASTA, Phuong BUI, Tobias SCHAEDLER
  • Publication number: 20230415236
    Abstract: A multi-material structure includes a refractory portion with a metal or metal alloy of at least one of niobium (Nb), molybdenum (Mo), tantalum (Ta), tungsten (W), rhenium (Re), iridium (Ir), vanadium (V), and ruthenium (Ru). A structural portion is metallurgically joined with the refractory portion. The structural portion includes a titanium (Ti) alloy. At least one of the refractory and structural portions is additively manufactured.
    Type: Application
    Filed: March 6, 2023
    Publication date: December 28, 2023
    Applicant: The Boeing Company
    Inventors: Jonathan D. Embler, William E. O'Connor, Tobias Schaedler, Eric C. Clough, Raymond Nguyen, Sonia Zacher
  • Patent number: 11840332
    Abstract: Some variations provide a leading-edge heat pipe comprising: (a) an envelope fabricated from a shell material, wherein the envelope includes at least one edge with a radius of curvature of less than 3 mm, and wherein the envelope includes, or is in thermal communication with, at least one heat-rejection surface; (b) a porous wick fabricated from a ceramic or metallic wick material, wherein the porous wick is configured within a first portion of the interior cavity, wherein at least a portion of the porous wick is adjacent to the inner surface, and wherein the porous wick has a bimodal pore distribution comprising an average capillary-pore size from 0.2 microns to 200 microns and an average high-flow pore size from 100 microns to 2 millimeters (the average high-flow pore size is greater than the average capillary-pore size); and (c) a phase-change heat-transfer material contained within the porous wick.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: December 12, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S Roper, Mark R. O'Masta, Tobias A. Schaedler, Jacob M. Hundley, Tiffany Stewart
  • Patent number: 11787746
    Abstract: Some variations provide a pre-ceramic matrix composite comprising: a precursor pre-ceramic matrix; reinforcing elements disposed within the precursor pre-ceramic matrix; and a compressible material disposed on the surface of the reinforcing elements and interposed between the reinforcing elements and the precursor pre-ceramic matrix. Other variations provide a ceramic matrix composite comprising: a ceramic matrix; reinforcing elements disposed within the ceramic matrix; and a compressed material disposed on the surface of the reinforcing elements and interposed between the reinforcing elements and the matrix. The coating of compressible material prevents cracking during processing because the coating absorbs stresses associated with volumetric shrinkage of the ceramic matrix during densification, thereby reducing the stresses at the interface between the reinforcing elements and the ceramic matrix. Methods of fabricating ceramic matrix composites using the principles of the invention are disclosed.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: October 17, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Mark O'Masta, Phuong Bui, Tobias Schaedler
  • Publication number: 20230326637
    Abstract: This invention provides methods for fabricating a hard or soft magnet with tailorable magnetic and crystallographic orientations. Methods are disclosed to individually tailor three-dimensional voxels for selected crystallographic orientations and, independently, selected magnetic orientations with location specificity throughout a magnet.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Inventors: Brennan YAHATA, Eric CLOUGH, Christopher HENRY, Amber SUCICH, Darby LAPLANT, Tobias SCHAEDLER
  • Patent number: 11756799
    Abstract: A ceramic article. In some embodiments, the ceramic article includes a ceramic body composed of a ceramic material; and a first conductive trace, the first conductive trace having a first portion entirely within the ceramic material, the first portion having a length of 0.5 mm and transverse dimensions less than 500 microns, the ceramic material including a plurality of ceramic particles in a ceramic matrix.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: September 12, 2023
    Assignee: HRL LABORATORIES, LLC
    Inventors: Tobias Schaedler, Kayleigh Porter, Phuong Bui
  • Patent number: 11721458
    Abstract: This invention provides methods for fabricating a hard or soft magnet with tailorable magnetic and crystallographic orientations. Methods are disclosed to individually tailor three-dimensional voxels for selected crystallographic orientations and, independently, selected magnetic orientations with location specificity throughout a magnet.
    Type: Grant
    Filed: June 26, 2021
    Date of Patent: August 8, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Brennan Yahata, Eric Clough, Christopher Henry, Amber Sucich, Darby Laplant, Tobias Schaedler
  • Patent number: 11693153
    Abstract: The disclosed structure is configured such that it does not support electromagnetic waves having frequencies within a selected band gap; those electromagnetic waves are thus reflected. Some variations provide an omnidirectional infrared reflector comprising a three-dimensional photonic crystal containing: rods of a first material that has a first refractive index, wherein the rods are arranged to form a plurality of lattice periods in three dimensions, and wherein the rods are connected at a plurality of nodes; and a second material that has a refractive index that is lower than the first refractive index, wherein the rods are embedded in the second material. The lattice spacing and the rod radius or width are selected to produce a photonic band gap within a selected band of the infrared spectrum. Methods of making and using the three-dimensional photonic crystal are described. Applications include thermal barrier coatings and blackbody emission signature control.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: July 4, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Shanying Cui, Sean M. Meenehan, Tobias A. Schaedler, Phuong Bui
  • Patent number: 11661664
    Abstract: A thin-walled metal part, and a method to fabricate such a part out of various alloys. A plurality of layers are formed, each of the layers being formed on a polymer template or on a previously formed layer. A homogenizing heat treatment is used to cause chemical elements in the layers to interdiffuse, to form a single continuous layer with a substantially uniform alloy composition.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: May 30, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, John H. Martin
  • Patent number: 11591484
    Abstract: Some variations provide a composition for additive manufacturing (3D printing) of metals, comprising: from 10 vol % to 70 vol % of a photocurable liquid resin; from 10 vol % to 70 vol % of metal or metal alloy particles, optionally configured with a photoreflective surface; and from 0.01 vol % to 10 vol % of a photoinitiator. Other variations provide a composition for additive manufacturing of metals, comprising: from 1 vol % to 70 vol % of a photocurable liquid resin; from 0.1 vol % to 98 vol % of an organometallic compound containing a first metal; from 1 vol % to 70 vol % of metal or metal alloy particles containing a second metal (which may be the same as or different than the first metal); and from 0.01 vol % to 10 vol % of a photoinitiator. Many examples of metals, photocurable resins, organometallic compounds, photoinitiators, and optional additives are disclosed, and methods of making and using the composition are described.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: February 28, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Phuong P. Bui, Zak C. Eckel, Jacob M. Hundley, Kayleigh A. Porter, John H. Martin
  • Patent number: 11535360
    Abstract: Some variations provide a leading-edge heat pipe comprising: (a) an envelope fabricated from a shell material, wherein the envelope includes at least one edge with a radius of curvature of less than 3 mm, and wherein the envelope includes, or is in thermal communication with, at least one heat-rejection surface; (b) a porous wick fabricated from a ceramic or metallic wick material, wherein the porous wick is configured within a first portion of the interior cavity, wherein at least a portion of the porous wick is adjacent to the inner surface, and wherein the porous wick has a bimodal pore distribution comprising an average capillary-pore size from 0.2 microns to 200 microns and an average high-flow pore size from 100 microns to 2 millimeters (the average high-flow pore size is greater than the average capillary-pore size); and (c) a phase-change heat-transfer material contained within the porous wick.
    Type: Grant
    Filed: May 17, 2020
    Date of Patent: December 27, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, Mark R. O'Masta, Tobias A. Schaedler, Jacob M. Hundley, Tiffany Stewart
  • Publication number: 20220314316
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Application
    Filed: June 10, 2022
    Publication date: October 6, 2022
    Inventors: John H. MARTIN, Tobias A. SCHAEDLER, Brennan YAHATA, Jacob M. HUNDLEY, Jason A. GRAETZ, Adam F. GROSS, William CARTER
  • Patent number: 11446735
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: September 20, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Tobias A. Schaedler, Brennan Yahata, Jacob M. Hundley, Jason A. Graetz, Adam F. Gross, William Carter
  • Publication number: 20220267218
    Abstract: Insulating ceramic panels and methods of forming insulating ceramic panels are disclosed herein. The insulating ceramic panels include a plurality of hollow particles and an oxide binder. The plurality of hollow particles are formed from a hollow particle material that includes a metal oxide. The plurality of hollow particles defines an average equivalent particle diameter of at least 10 micrometers (?m) and at most 500 ?m. In addition, the plurality of hollow particles defines an average wall thickness that is at least 3% and at most 30% of the average equivalent particle diameter. The oxide binder material attaches each hollow particle to at least one other hollow particle and differs from the hollow particle material. The insulating ceramic panels define a particle-enclosed void volume fraction, which is enclosed within the plurality of hollow particles, and an interstitial void volume fraction, which is defined within an interstitial space among the plurality of hollow particles.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 25, 2022
    Inventors: Stephen E. Lehman, Kayleigh Porter, Tobias A. Schaedler