Patents by Inventor Tobias A. Schaedler

Tobias A. Schaedler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10895015
    Abstract: A thin-walled metal part, and a method to fabricate such a part out of various alloys. A plurality of layers are formed, each of the layers being formed on a polymer template or on a previously formed layer. A homogenizing heat treatment is used to cause chemical elements in the layers to interdiffuse, to form a single continuous layer with a substantially uniform alloy composition.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: January 19, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, John H. Martin
  • Publication number: 20200377983
    Abstract: A metal microparticle coated with metal hydride nanoparticles is disclosed. Some variations provide a material comprising a plurality of microparticles (1 micron to 1 millimeter) containing a metal or metal alloy and coated with a plurality of nanoparticles (less than 1 micron) containing a metal hydride or metal alloy hydride. The invention eliminates non-uniform distribution of sintering aids by attaching them directly to the surface of the microparticles. No method is previously known to exist which can assemble nanoparticle metal hydrides onto the surface of a metal microparticle. Some variations provide a solid article comprising a material with a metal or metal alloy microparticles coated with metal hydride or metal alloy hydride nanoparticles, wherein the nanoparticles form continuous or periodic inclusions at or near grain boundaries within the microparticles.
    Type: Application
    Filed: August 16, 2020
    Publication date: December 3, 2020
    Inventors: John H. MARTIN, Tobias A. SCHAEDLER, Adam F. GROSS, Alan J. JACOBSEN
  • Patent number: 10851711
    Abstract: A temperature-following layer may be applied to a surface of components within an internal combustion engine. The temperature-following layer follows the temperature swing of adjacent gases (for example, in a combustion chamber). The temperature-following layer may be applied directly to a substrate, or the temperature-following layer may be an outer layer of a multi-layer thermal barrier coating. The multi-layer thermal barrier coating may include, for example, an insulating layer, a sealing layer bonded to the insulating layer, and a porous temperature-following layer disposed on the sealing layer. The sealing layer is substantially non-permeable and configured to seal against the insulating layer.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: December 1, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Tobias A Schaedler, Sloan Smith, Christine M Lihn, Scott M Biesboer, Russell P Durrett, Peter P Andruskiewicz, IV
  • Patent number: 10787728
    Abstract: A metal microparticle coated with metal hydride nanoparticles is disclosed. Some variations provide a material comprising a plurality of microparticles (1 micron to 1 millimeter) containing a metal or metal alloy and coated with a plurality of nanoparticles (less than 1 micron) containing a metal hydride or metal alloy hydride. The invention eliminates non-uniform distribution of sintering aids by attaching them directly to the surface of the microparticles. No method is previously known to exist which can assemble nanoparticle metal hydrides onto the surface of a metal microparticle. Some variations provide a solid article comprising a material with a metal or metal alloy microparticles coated with metal hydride or metal alloy hydride nanoparticles, wherein the nanoparticles form continuous or periodic inclusions at or near grain boundaries within the microparticles.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: September 29, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Tobias A. Schaedler, Adam F. Gross, Alan J. Jacobsen
  • Publication number: 20200290931
    Abstract: This disclosure provides resin formulations which may be used for 3D printing and thermally treating to produce a ceramic material. The disclosure provides direct, free-form 3D printing of a preceramic polymer, followed by converting the preceramic polymer to a 3D-printed ceramic composite with potentially complex 3D shapes. A wide variety of chemical compositions is disclosed, and several experimental examples are included to demonstrate reduction to practice. For example, preceramic resin formulations may contain a carbosilane in which there is at least one functional group selected from vinyl, allyl, ethynyl, unsubstituted or substituted alkyl, ester group, amine, hydroxyl, vinyl ether, vinyl ester, glycidyl, glycidyl ether, vinyl glycidyl ether, vinyl amide, vinyl triazine, vinyl isocyanurate, acrylate, methacrylate, alkacrylate, alkyl alkacrylate, phenyl, halide, thiol, cyano, cyanate, or thiocyanate.
    Type: Application
    Filed: May 30, 2020
    Publication date: September 17, 2020
    Inventors: Zak C. ECKEL, Andrew P. NOWAK, Ashley M. DUSTIN, April R. RODRIGUEZ, Phuong BUI, Tobias A. SCHAEDLER
  • Patent number: 10753418
    Abstract: Architected materials with superior energy absorption properties when loaded in compression. In several embodiments such materials are formed from micro-truss structures composed of interpenetrating tubes in a volume between a first surface and a second surface. The stress-strain response of these structures, for compressive loads applied to the two surfaces, is tailored by arranging for some but not all of the tubes to extend to both surfaces, adjusting the number of layers of repeated unit cells in the structure, arranging for the nodes to be offset from alignment along lines normal to the surfaces, or including multiple interlocking micro-truss structures.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 25, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Alan J. Jacobsen, Zak C. Eckel, Sophia S. Yang, Adam E. Sorensen, Jacob M. Hundley, William Carter, Jie Jiang
  • Publication number: 20200261976
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: John H. MARTIN, Tobias A. SCHAEDLER, Brennan YAHATA, Jacob M. HUNDLEY, Jason A. GRAETZ, Adam F. GROSS, William CARTER
  • Patent number: 10737984
    Abstract: This invention provides resin formulations which may be used for 3D printing and pyrolyzing to produce a ceramic matrix composite. The resin formulations contain a solid-phase filler, to provide high thermal stability and mechanical strength (e.g., fracture toughness) in the final ceramic material. The invention provides direct, free-form 3D printing of a preceramic polymer loaded with a solid-phase filler, followed by converting the preceramic polymer to a 3D-printed ceramic matrix composite with potentially complex 3D shapes or in the form of large parts. Other variations provide active solid-phase functional additives as solid-phase fillers, to perform or enhance at least one chemical, physical, mechanical, or electrical function within the ceramic structure as it is being formed as well as in the final structure. Solid-phase functional additives actively improve the final ceramic structure through one or more changes actively induced by the additives during pyrolysis or other thermal treatment.
    Type: Grant
    Filed: November 26, 2017
    Date of Patent: August 11, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Zak C. Eckel, Scott Biesboer, Kenneth Cante
  • Patent number: 10703025
    Abstract: Some variations provide a process for fabricating a ceramic structure, the process comprising: producing a plurality of preceramic polymer parts; chemically, physically, and/or thermally joining the preceramic polymer parts together, to generate a preceramic polymer structure; thermally treating the preceramic polymer structure, to generate a ceramic structure; and recovering the ceramic structure. The process may employ additive manufacturing, subtractive manufacturing, casting, or a combination thereof. A composite overwrap may be applied to the preceramic polymer structure prior to pyrolysis, and the composite overwrap also pyrolyzes to a ceramic composite and is a part of the final ceramic structure. The ceramic structure may be silicon oxycarbide, silicon carbide, silicon nitride, silicon oxynitride, silicon carbonitride, silicon boronitride, silicon boron carbonitride, or boron nitride, for example.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 7, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Scott M. Biesboer, Tobias A. Schaedler, Jacob M. Hundley, Zak C. Eckel
  • Publication number: 20200199716
    Abstract: Some variations provide an aluminum alloy comprising aluminum and from 0.5 wt % to 60 wt % of an alloy element X selected from the group consisting of Zr, Ti, Hf, V, Ta, Nb, Cr, Mo, W, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and combinations or alloys thereof, wherein the alloy element X is present as an intermetallic precipitate containing Al and X. An exemplary intermetallic precipitate is Al3Zr. Some variations provide a feedstock powder comprising: from 80 wt % to 99 wt % of an aluminum-containing base powder with an average particle size from 10 microns to 500 microns; and, intimately mixed with the base powder, from 1 wt % to 20 wt % of an alloying powder with average particle size from 0.01 microns to 90 microns, containing an alloy element X or a hydride, carbide, oxide, nitride, boride, or sulfide thereof.
    Type: Application
    Filed: September 10, 2019
    Publication date: June 25, 2020
    Inventors: Tobias A. SCHAEDLER, Jacob M. HUNDLEY, John H. MARTIN, Julie A. MILLER
  • Patent number: 10682699
    Abstract: Disclosed herein are surface-functionalized powders which alter the solidification of the melted powders. Some variations provide a powdered material comprising a plurality of particles fabricated from a first material, wherein each of the particles has a particle surface area that is continuously or intermittently surface-functionalized with nanoparticles and/or microparticles selected to control solidification of the powdered material from a liquid state to a solid state. Other variations provide a method of controlling solidification of a powdered material, comprising melting at least a portion of the powdered material to a liquid state, and semi-passively controlling solidification of the powdered material from the liquid state to a solid state. Several techniques for semi-passive control are described in detail.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 16, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: John H. Martin, Tobias A. Schaedler, Brennan Yahata, Jacob M. Hundley, Jason A. Graetz, Adam F. Gross, William Carter
  • Patent number: 10647618
    Abstract: A thermal and environmental barrier coating composed of ceramic hollow microspheres sintered together. In one embodiment the microspheres are sintered together with a powder of another material that acts as a binder, or with a powder of a material that may be the same as the material of the hollow microspheres, forming a matrix in which the hollow microspheres are embedded. The hollow microspheres may be composed of a material with a high temperature capability, and with a low coefficient of thermal expansion.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: May 12, 2020
    Assignee: HRL Laboratories, LLC
    Inventor: Tobias A. Schaedler
  • Patent number: 10600739
    Abstract: An interposer includes an interposer substrate having a series of vias, and a series of metallic interconnects in the series of vias. The interposer substrate has a first surface and a second surface opposite the first surface. The interposer substrate includes a dielectric material. A first pitch of the series of vias at a first end of the series of vias is different than a second pitch of the series of vias at a second end of the series of vias.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: March 24, 2020
    Assignee: HRL Laboratories, LLC
    Inventors: Florian G. Herrault, Zak C. Eckel, Tobias A. Schaedler, Robert Mone
  • Patent number: 10513056
    Abstract: An ordered, 3-dimensional, micro-scale, open-cellular truss structure including interconnected hollow polymer tubes. The hollow micro-truss structure separates two fluid volumes which can be independently pressurized or depressurized to control flow, or materials properties, or both. Applications for this invention include deployable structures, inflatable structures, flow control, and vented padding.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: December 24, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, William B. Carter, Alan J. Jacobsen, Kevin J. Maloney, Robert E. Doty, Tobias A. Schaedler, Adam E. Sorensen, Andrew P. Nowak
  • Patent number: 10500811
    Abstract: A lightweight sandwich panel structure with a complex shape and curvature, and a method to fabricate such a panel out of high temperature alloys. Embodiments of a micro-truss core structure that offer high specific strength and stiffness while allowing for curvature, and methods for depositing multiple layers of metals that can be interdiffused into complex alloys, are provided. A core of a panel may be fabricated from a polymer template, which may be shaped, e.g., curved, and coated with metal layers, which may then be heat treated to cause the layers of metal to interdiffuse, to form an alloy.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: December 10, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Jacob M. Hundley, John H. Martin, Christopher S. Roper, Eric C. Clough
  • Publication number: 20190315086
    Abstract: A three-dimensional lattice architecture with a thickness hierarchy includes a first surface and a second surface separated from each other with a distance therebetween defining a thickness of the three-dimensional lattice architecture; a plurality of angled struts extending along a plurality of directions between the first surface and the second surface; a plurality of nodes connecting the plurality of angled struts with one another forming a plurality of unit cells. At least a portion of the plurality of angled struts are internally terminated along the thickness direction of the lattice structure and providing a plurality of internal degrees of freedom towards the first or second surface of the lattice architecture.
    Type: Application
    Filed: May 29, 2019
    Publication date: October 17, 2019
    Inventors: Jacob M. Hundley, Tobias A. Schaedler, Sophia S. Yang, Alan J. Jacobsen
  • Patent number: 10427375
    Abstract: A three-dimensional lattice architecture with a thickness hierarchy includes a first surface and a second surface separated from each other with a distance therebetween defining a thickness of the three-dimensional lattice architecture; a plurality of angled struts extending along a plurality of directions between the first surface and the second surface; a plurality of nodes connecting the plurality of angled struts with one another forming a plurality of unit cells. At least a portion of the plurality of angled struts are internally terminated along the thickness direction of the lattice structure and providing a plurality of internal degrees of freedom towards the first or second surface of the lattice architecture.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: October 1, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Jacob M. Hundley, Tobias A. Schaedler, Sophia S. Yang, Alan J. Jacobsen
  • Patent number: 10408997
    Abstract: A ceramic micro-truss structure. In one embodiment green state polymer micro-truss structure is formed by exposing a photomonomer resin through a mask to collimated light from three or more directions. The green state polymer micro-truss structure is shaped and post-cured to form a cured polymer micro-truss structure. The cured polymer micro-truss structure is pyrolyzed to form a ceramic micro-truss structure, which may subsequently be coated with metal.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: September 10, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Zak C. Eckel, Tobias A. Schaedler, Alan J. Jacobsen, Chaoyin Zhou, John H. Martin
  • Patent number: 10400842
    Abstract: Branched hierarchical micro-truss structures may be incorporated into energy-absorbing structures to exhibit a tailored multi-stage buckling response to a range of different compressive loads. Branched hierarchical micro-truss structures may also be configured to function as vascular systems to deliver fluid for thermal load management or altering the aerodynamic properties of a vehicle or structure into which the branched hierarchical micro-truss structure is incorporated. The branched hierarchical micro-truss structure includes a first layer having a series of interconnected struts and a second layer having a series of struts branching outward from an end of each of the struts in the first layer.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 3, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Tobias A. Schaedler, Sophia S. Yang, Jie Jiang, Zak C. Eckel, Christopher S. Roper
  • Patent number: 10399909
    Abstract: A method of manufacturing an ordered cellular structure including a series of interconnected unit cells. Each unit cell includes at least one straight wall segment. The method includes irradiating a volume of photo-monomer in a reservoir with at least one light beam from at least one light source to form the ordered cellular structure. Irradiating the volume of photo-monomer includes directing the at least one light beam though a series of interconnected apertures defined in a photo-mask covering the reservoir.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: September 3, 2019
    Assignee: HRL Laboratories, LLC
    Inventors: Zak C. Eckel, Tobias A. Schaedler, Eric C. Clough