Patents by Inventor Tobias Meyer

Tobias Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10993620
    Abstract: A method for locating a functional brain tissue by electrical stimulation includes performing electrical stimulations of different areas of the brain tissue to activate brain tissue regions identifying the functional brain tissue, recording an image or a video sequence of the brain tissue during and/or after a stimulation, comparing the recorded image or the video sequence with a reference image or a reference video sequence recorded without stimulation to determine a position of the brain tissue region that is activated by the stimulation. At least two stimulations of a plurality of electrical stimulations are performed, one directly after the other or simultaneously, and the recording of an image or a video sequence of the portion of brain tissue takes place during and/or after each performance of one of the at least two stimulations or during and/or after the simultaneous performance of the at least two stimulations.
    Type: Grant
    Filed: September 28, 2019
    Date of Patent: May 4, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Tobias Meyer, Martin Oelschlaegel, Ute Morgenstern, Stephan B. Sobottka, Gabriele Schackert
  • Publication number: 20210104574
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 8, 2021
    Inventors: Martin BEHRINGER, Andreas BIEBERSDORF, Ruth BOSS, Erwin LANG, Tobias MEYER, Alexander PFEUFFER, Marc PHILIPPENS, Julia STOLZ, Tansen VARGHESE, Sebastian WITTMANN, Siegfried HERRMANN, Berthold HAHN, Bruno JENTZSCH, Korbinian PERZLMAIER, Peter STAUSS, Petrus SUNDGREN, Jens MUELLER, Kerstin NEVELING, Frank SINGER, Christian MUELLER
  • Publication number: 20210091527
    Abstract: The invention relates to an apparatus for generating laser pulses. It is an object of the invention to provide a method for generating synchronized laser pulse trains at variable wavelengths (e.g., for coherent Raman spectroscopy/microscopy), wherein the switching time for switching between different wavelengths should be in the sub-?s range. For this purpose the apparatus according to the invention comprises a pump laser (1), which emits pulsed laser radiation at a specified wavelength, an FDML laser (3), which emits continuous wave laser radiation at a cyclically variable wavelength, and a nonlinear conversion medium (4), in which the pulsed laser radiation of the pump laser (1) and the continuous wave laser radiation of the FDML laser (3) are superposed.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 25, 2021
    Applicants: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitat Jena, Leibniz-lnstitut Für Photonische Technologien E.V.
    Inventors: Thomas GOTTSCHALL, Jens LIMPERT, Andreas TÜNNERMANN, Tobias MEYER, Jürgen POPP
  • Publication number: 20210043796
    Abstract: Optoelectronic components, groups of optoelectronic components, and methods for producing a component or a plurality of optoelectronic components are provided. The method may include providing a growth substrate having a buffer layer arranged thereon. The buffer layer may be structured in such a way that it has a plurality of the openings which are spaced apart from one another in lateral directions. A plurality of semiconductor bodies may be formed in the openings, wherein in the areas of the openings, the buffer layer has subregions which are arranged in a vertical direction between the growth substrate and the semiconductor bodies. The growth substrate may be detached from the semiconductor bodies. The buffer layer may be removed at least in the areas of the subregions.
    Type: Application
    Filed: April 26, 2019
    Publication date: February 11, 2021
    Inventors: Rainer HARTMANN, Clemens VIERHEILIG, Tobias MEYER, Andreas RUECKERL, Tilman SCHIMPKE, Michael BINDER
  • Patent number: 10769782
    Abstract: Exemplary method, computer-accessible medium and system can be provided for determining the presence or absence of a local and/or global property of a biological tissue sample. Thus, it is possible to obtain at least one image of the sample, search the image(s) for a presence of at least one particular feature that is contained in a pre-defined set of features, and assign, to the particular feature(s). It is possible to compute, with a computer processor, at least one discriminant value that is a function of the pronunciation index that is weighted with a particular weight. The weight of each pronunciation index is a measure for a relevance of the corresponding feature with respect to the property. It is possible to determine whether the property is present in at least one part of the biological tissue sample depending on whether the discriminant value exceeds a pre-defined threshold and/or and optimized threshold.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: September 8, 2020
    Assignees: Leibniz-Institut für Photonische Technologien e.V., Friedrich-Schiller-Universität Jena
    Inventors: Jürgen Popp, Thomas Bocklitz, Olga Chernavskaia, Tobias Meyer
  • Patent number: 10651342
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor body comprising a first semiconductor structure, a second semiconductor structure and an active region between the first and the second semiconductor structure and a plurality of recesses, each penetrating at least one of the semiconductor structures and the active region, wherein a cover surface of the active region is a continuous surface, and wherein at least in some of the recesses, surfaces of the recesses are completely covered with an electrically insulating material.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: May 12, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Roland Zeisel, Michael Binder, Jens Ebbecke, Tobias Meyer
  • Publication number: 20200100678
    Abstract: A method for locating a functional brain tissue by electrical stimulation includes performing electrical stimulations of different areas of the brain tissue to activate brain tissue regions identifying the functional brain tissue, recording an image or a video sequence of the brain tissue during and/or after a stimulation, comparing the recorded image or the video sequence with a reference image or a reference video sequence recorded without stimulation to determine a position of the brain tissue region that is activated by the stimulation. At least two stimulations of a plurality of electrical stimulations are performed, one directly after the other or simultaneously, and the recording of an image or a video sequence of the portion of brain tissue takes place during and/or after each performance of one of the at least two stimulations or during and/or after the simultaneous performance of the at least two stimulations.
    Type: Application
    Filed: September 28, 2019
    Publication date: April 2, 2020
    Inventors: Tobias Meyer, Martin Oelschlaegel, Ute Morgenstern, Stephan B. Sobottka, Gabriele Schackert
  • Publication number: 20200044117
    Abstract: An optoelectronic semiconductor device includes a semiconductor layer sequence including an active zone that generates radiation by electroluminescence; a p-electrode and an n-electrode; an electrically insulating passivation layer on side surfaces of the semiconductor layer sequence; and an edge field generating device on the side surfaces on a side of the passivation layer facing away from the semiconductor layer sequence at the active zone, wherein the edge field generating device is configured to generate an electric field at least temporarily in an edge region of the active zone so that, during operation, a current flow through the semiconductor layer sequence is controllable in the edge region.
    Type: Application
    Filed: April 16, 2018
    Publication date: February 6, 2020
    Inventors: Clemens Vierheilig, Philipp Kreuter, Rainer Hartmann, Michael Binder, Tobias Meyer
  • Patent number: 10522699
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 31, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Strauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10475951
    Abstract: A method for producing an optoelectronic semiconductor chip is disclosed. A substrate is provided and a first layer is grown. An etching process is carrying out to initiate V-defects. A second layer is grown and a quantum film structure is grown. An optoelectronic semiconductor chip is also disclosed. The method can be used to produce the optoelectronic semiconductor chip.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Löffler, Tobias Meyer, Adam Bauer, Christian Leirer
  • Patent number: 10418355
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment the optoelectronic semiconductor chip includes a first semiconductor layer sequence having a plurality of microdiodes, and a second semiconductor layer sequence having an active region. The first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 17, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Rainer Butendeich, Alexander Walter, Matthias Peter, Tobias Meyer, Tetsuya Taki, Hubert Maiwald
  • Publication number: 20190259911
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment an optoelectronic semiconductor chip includes a semiconductor body comprising a first semiconductor structure, a second semiconductor structure and an active region between the first and the second semiconductor structure and a plurality of recesses, each penetrating at least one of the semiconductor structures and the active region, wherein a cover surface of the active region is a continuous surface, and wherein at least in some of the recesses, surfaces of the recesses are completely covered with an electrically insulating material.
    Type: Application
    Filed: July 11, 2017
    Publication date: August 22, 2019
    Inventors: Roland Zeisel, Michael Binder, Jens Ebbecke, Tobias Meyer
  • Patent number: 10388828
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: August 20, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Patent number: 10381311
    Abstract: A method of arranging a plurality of semiconductor structural elements on a carrier includes arranging at least some of the semiconductor structural elements in multiple groups G and at least one semiconductor structural element of a group G has a property E that determines the position of the respective group G of semiconductor structural elements on the carrier.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: August 13, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Tobias Meyer
  • Patent number: 10328401
    Abstract: A valve for a plumbing system has a housing with an inlet and an outlet and a valve body movable in the housing between a throttle position with a decreased a flow cross section and reduced flow between the inlet and outlet and an open position with a large flow cross section and free flow between the inlet and outlet. Structure in the valve body applies hydraulic pressure from the inlet or outlet to the valve body to shift same into the throttle position when a pressure differential between the inlet and the outlet exceeds a specified value and into the open position in the absence of a pressure differential between the inlet and the outlet.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 25, 2019
    Assignee: FRANZ KALDEWEI GMBH & CO. KG
    Inventors: Thomas Schmidt, Tobias Meyer
  • Publication number: 20190109246
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Stauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10249787
    Abstract: The invention relates to a component (10) having a semiconductor layer sequence, which has a p-conducting semiconductor layer (1), an n-conducting semiconductor layer (2), and an active zone (3) arranged between the p-conducting semiconductor layer and the n-conducting semiconductor layer, wherein the active zone has a multiple quantum well structure, which, from the p-conducting semiconductor layer to the n-conducting semiconductor layer, has a plurality of p-side barrier layers (32p) having intermediate quantum well layers (31) and a plurality of n-side barrier layers (32n) having intermediate quantum layers (31). Recesses (4) having flanks are formed in the semiconductor layer sequence on the part of the p-conducting semiconductor layer, wherein the quantum well layers and/or the n- and p-side barrier layers extend in a manner conforming to the flanks of the recesses at least in regions. The interior barrier layers have a larger average layer thickness than the p-side barrier layers.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 2, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Tobias Meyer, Thomas Lehnhardt, Matthias Peter, Asako Hirai, Juergen Off, Philipp Drechsel, Peter Stauss
  • Patent number: 10202678
    Abstract: Method for heat treating a steel component (28, 36) comprising the steps of: a) carbonitriding the steel component (28, 36) at a temperature of 930-970° C., b) cooling the steel component (28, 36), d) re-heating the steel component (28, 36) to a temperature of 780-820° C. and d) quenching the steel component (28, 36). The method comprises the step of either e) performing a bainite transformation at a temperature just above the martensite formation temperature, transforming 25-99% of the austenite into bainite at the temperature and then increasing the temperature to speed up the transformation of the remaining austenite into bainite, or f) holding the steel component (28, 36) at an initial temperature (T1) above the initial martensite formation temperature (Ms), and lowering the initial temperature (T1) to a temperature (T2) that is below the initial martensite formation temperature (Ms) but above the actual martensite formation temperature during the bainite transformation.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: February 12, 2019
    Assignee: Aktiebolaget SKF
    Inventors: Thore Lund, Tobias Meyer, Staffan Larsson, Peter Neuman
  • Patent number: 10164134
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment the chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure comprises multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction, wherein the multi-quantum-well structure has at least one emission region and multiple transport regions which are arranged sequentially in an alternating manner in a direction perpendicular to the growth direction, wherein at least one of the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission regions, and wherein the quantum-well layers in the transport regions and in the emission regions are oriented perpendicularly to the growth direction with exception of a junction region between adjacent transport regions and emission regions.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 25, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Stauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Publication number: 20180365831
    Abstract: Exemplary method, computer-accessible medium and system can be provided for determining the presence or absence of a local and/or global property of a biological tissue sample. Thus, it is possible to obtain at least one image of the sample, search the image(s) for a presence of at least one particular feature that is contained in a pre-defined set of features, and assign, to the particular feature(s). It is possible to compute, with a computer processor, at least one discriminant value that is a function of the pronunciation index that is weighted with a particular weight. The weight of each pronunciation index is a measure for a relevance of the corresponding feature with respect to the property. It is possible to determine whether the property is present in at least one part of the biological tissue sample depending on whether the discriminant value exceeds a pre-defined threshold and/or and optimized threshold.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 20, 2018
    Inventors: JÜRGEN POPP, THOMAS BOCKLITZ, OLGA CHERNAVSKAIA, TOBIAS MEYER