Patents by Inventor Todd Abbott

Todd Abbott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060043617
    Abstract: DRAM cell arrays having a cell area of less than about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is non-orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Application
    Filed: August 30, 2004
    Publication date: March 2, 2006
    Inventor: Todd Abbott
  • Publication number: 20060040447
    Abstract: NAND memory arrays and methods are provided. A plurality of first gate stacks is formed on a first dielectric layer that is formed on a substrate of a NAND memory array. The first dielectric layer and the plurality of first gate stacks formed thereon form a NAND string of memory cells of the memory array. A second gate stack is formed on a second dielectric layer that is formed on the substrate adjacent the first dielectric layer. The second dielectric layer with the second gate stack formed thereon forms a drain select gate adjacent an end of the NAND string. The second dielectric layer is thicker than the first dielectric layer.
    Type: Application
    Filed: August 18, 2004
    Publication date: February 23, 2006
    Inventors: Michael Violette, Garo Derderian, Todd Abbott
  • Publication number: 20060038205
    Abstract: DRAM cell arrays having a cell area of about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Application
    Filed: October 25, 2005
    Publication date: February 23, 2006
    Inventors: Todd Abbott, Homer Manning
  • Publication number: 20060017088
    Abstract: DRAM cell arrays having a cell area of about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Application
    Filed: July 20, 2004
    Publication date: January 26, 2006
    Inventors: Todd Abbott, Homer Manning
  • Publication number: 20060019457
    Abstract: Methods of forming a transistor having integrated metal silicide transistor gate electrode on a semiconductor assembly are described. The transistor gate is partially fabricated by reacting the metal with epitaxial silicon while residing in a trench to form metal silicide. A transistor gate isolation capping layer is formed in the trench and on the metal silicide. Optional trench spacers can be added to reduce the critical dimension restraints of a given fabrication process and thus form a transistor having smaller feature sizes than the critical dimension.
    Type: Application
    Filed: September 30, 2005
    Publication date: January 26, 2006
    Inventor: Todd Abbott
  • Publication number: 20060006456
    Abstract: A select gate of a NAND memory array has a first dielectric layer formed on a semiconductor substrate. A first conductive layer is formed on the first dielectric layer. Conductive spacers are formed on sidewalls of the first conductive layer and are located between an upper surface of the first conductive layer and the first dielectric layer. A second dielectric layer overlies the first conductive layer and the conductive spacers. A second conductive layer is formed on the second dielectric layer. A third conducive layer is formed on the second conductive layer, passes though a portion of the second conductive layer and the second dielectric layer, and contacts the first conductive layer. The third conductive layer electrically connects the first and second conductive layers.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 12, 2006
    Inventors: Todd Abbott, Michael Violette
  • Publication number: 20050285178
    Abstract: Apparatus and methods are provided. Floating-gate memory cells and select gates of NAND memory arrays are formed concurrently by anisotropically removing portions of a second conductive layer disposed on a first conductive layer such that remaining portions of the second conductive layer self align with and are disposed on sidewalls of the first conductive layer. The first conductive layer is disposed on a first dielectric layer that is disposed on a substrate. A second dielectric layer is formed overlying the first conductive layer and the remaining portions of the second conductive layer. A third conductive layer is formed on the second dielectric layer. A fourth conductive layer is formed on the third conductive layer. For the select gate, the fourth conductive layer also passes through the third conductive layer and the second dielectric layer to electrically connect the conductive layers.
    Type: Application
    Filed: June 28, 2004
    Publication date: December 29, 2005
    Inventors: Todd Abbott, Michael Violette
  • Publication number: 20050266666
    Abstract: According to the present invention, an ultrathin buried diffusion barrier layer (UBDBL) is formed over all or part of the doped polysilicon layer of a polysilicide structure composed of the polycrystalline silicon film and an overlying film of a metal, metal silicide, or metal nitride. More specifically, according to one embodiment of the present invention, a memory cell is provided comprising a semiconductor substrate, a P well, an N well, an N type active region, a P type active region, an isolation region, a polysilicide gate electrode structure, and a diffusion barrier layer. The P well is formed in the semiconductor substrate. The N well is formed in the semiconductor substrate adjacent to the P well. The N type active region is defined in the P well and the P type active region is defined in the N well. The isolation region is arranged to isolate the N type active region from the P type active region.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 1, 2005
    Inventors: Jigish Trivedi, Zhongze Wang, Chih-Chen Cho, Mike Violette, Todd Abbott
  • Publication number: 20050199932
    Abstract: The invention includes semiconductor structures having buried silicide-containing bitlines. Vertical surround gate transistor structures can be formed over the bitlines. The surround gate transistor structures can be incorporated into memory devices, such as, for example, DRAM devices. The invention can be utilized for forming 4F2 DRAM devices.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Inventors: Todd Abbott, H. Manning
  • Patent number: 6930901
    Abstract: The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: August 16, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Todd Abbott, Jigish D. Tirvedi, Mike Violette, Chuck Dennison
  • Publication number: 20050167700
    Abstract: A conductive structure for gate lines and local interconnects in microelectronic devices. The conductive structure can be used in memory cells for SRAM devices or other types of products. The memory device cell can comprise a first conductive line, a second conductive line, a first active area, a second active area, a third active area, and a fourth active area. The first conductive line includes a first gate, a second gate, a first contact and a second contact. The second conductive line includes a third gate, a fourth gate, a third contact and a fourth contact. The first active area is electrically coupled to the first gate and the third contact; the second active area is electrically coupled to the second gate and the fourth contact; the third active area is electrically coupled to the third gate and the first contact; and the fourth active area is electrically coupled to the fourth gate and the second contact. The memory cell device, for example, can be a cell for an SRAM device.
    Type: Application
    Filed: March 23, 2005
    Publication date: August 4, 2005
    Applicant: Micron Technology, Inc.
    Inventor: Todd Abbott
  • Publication number: 20050037584
    Abstract: Methods of forming a transistor having integrated metal silicide transistor gate electrode on a semiconductor assembly are described. The transistor gate is partially fabricated by reacting the metal with epitaxial silicon while residing in a trench to form metal silicide. A transistor gate isolation capping layer is formed in the trench and on the metal silicide. Optional trench spacers can be added to reduce the critical dimension restraints of a given fabrication process and thus form a transistor having smaller feature sizes than the critical dimension.
    Type: Application
    Filed: August 15, 2003
    Publication date: February 17, 2005
    Inventor: Todd Abbott
  • Publication number: 20050003627
    Abstract: A method of forming a field effect transistor includes forming a channel region within bulk semiconductive material of a semiconductor substrate. Source/drain regions are formed on opposing sides of the channel region. An insulative dielectric region is formed within the bulk semiconductive material proximately beneath at least one of the source/drain regions. A method of forming a field effect transistor includes providing a semiconductor-on-insulator substrate, said substrate comprising a layer of semiconductive material formed over a layer of insulative material. All of a portion of the semiconductive material layer and all of the insulative material layer directly beneath the portion are removed thereby creating a void in the semiconductive material layer and the insulative material layer. Semiconductive channel material is formed within the void. Opposing source/drain regions are provided laterally proximate the channel material. A gate is formed over the channel material.
    Type: Application
    Filed: July 28, 2004
    Publication date: January 6, 2005
    Inventors: Todd Abbott, Zhongze Wang, Jigish Trivedi, Chih-Chen Cho
  • Patent number: 6594172
    Abstract: The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: July 15, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Todd Abbott, Jigish D. Trivedi, Mike Violette, Chuck Dennison
  • Patent number: 6535413
    Abstract: The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: March 18, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Todd Abbott, Jigish D. Trivedi, Mike Violette, Chuck Dennison
  • Publication number: 20030036258
    Abstract: The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
    Type: Application
    Filed: September 17, 2002
    Publication date: February 20, 2003
    Applicant: Micron Technology, Inc.
    Inventors: Todd Abbott, Jigish D. Trivedi, Mike Violette, Chuck Dennison
  • Publication number: 20020114180
    Abstract: The invention includes a method of fabricating a circuit in a manner to place certain structures within a predefined distance of one another. Electrical connections are formed between certain structures of silicon, by annealing a conductive material to cause silicon out-diffusing to form local interconnects. The silicon out-diffusion can be facilitated without a masking step thereby simplifying as well as speeding up the fabrication process. The invention also includes a local interconnect thus formed.
    Type: Application
    Filed: November 19, 2001
    Publication date: August 22, 2002
    Inventors: Todd Abbott, Jigish D. Trivedi, Mike Violette, Chuck Dennison