Patents by Inventor Todd David Pleake

Todd David Pleake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160124467
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 5, 2016
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9268373
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: February 23, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9176900
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: November 3, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9158384
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 13, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20150261262
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 9111703
    Abstract: Sensor stack venting techniques are described. In one or more implementations, one or more vent structures are formed within layers of a pressure sensitive sensor stack for a device. Vent structures including channels, holes, slots, and so forth are designed to provide pathways for gas released by feature elements to escape. The pathways may be arranged to convey outgases through the layers to designated escape points in a controlled manner that prevents deformities typically caused by trapped gases. The escape points in some layers enable at least some other layers to be edge-sealed. Pathways may then be formed to convey gas from the edge-sealed layer(s) to an edge vented layer(s) having one or more escape points, such that feature elements in the edge-sealed layer(s) remain protected from contaminants.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 18, 2015
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David Otto Whitt, III, Timothy C. Shaw, David C. Vandervoort, Todd David Pleake, Rob Huala, Matthew David Mickelson, Joel Lawrence Pelley, Christopher Harry Stoumbos, Richard Peter Spooner
  • Patent number: 9075566
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 7, 2015
    Assignee: Microsoft Technoogy Licensing, LLC
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8947864
    Abstract: Fabric outer layer techniques are described. In one or more implementations, an apparatus includes, an input portion having one or more keys configured to generate signals to be processed by a computing device as inputs, a connection portion that is configured to be removable attachable to the computing device and including at least one communication contact configured to form a communicative coupling with the computing device to communicate the generated signals, a flexible hinge that is configured to flexibly and communicatively connect the connection portion to the input portion, and first and second outer fabric layers that are configured to act as an outer surface of the one or more keys of the input portion and the flexible hinge and are physically secured to the connection portion.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: February 3, 2015
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8873227
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 28, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140291134
    Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 2, 2014
    Inventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
  • Patent number: 8830668
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 9, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whit, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140247546
    Abstract: Fabric outer layer techniques are described. In one or more implementations, an apparatus includes, an input portion having one or more keys configured to generate signals to be processed by a computing device as inputs, a connection portion that is configured to be removable attachable to the computing device and including at least one communication contact configured to form a communicative coupling with the computing device to communicate the generated signals, a flexible hinge that is configured to flexibly and communicatively connect the connection portion to the input portion, and first and second outer fabric layers that are configured to act as an outer surface of the one or more keys of the input portion and the flexible hinge and are physically secured to the connection portion.
    Type: Application
    Filed: May 14, 2014
    Publication date: September 4, 2014
    Applicant: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140218851
    Abstract: A shield can is described. In one or more implementations, a shield can includes a frame configured to be installed on a printed circuit board. The shield can also includes a lid configured to be connected to the frame after installation of the frame to form the shield can over one or more components that are installed on the PCB.
    Type: Application
    Filed: September 20, 2013
    Publication date: August 7, 2014
    Inventors: Stephen C. Klein, Todd David Pleake, Daniel Galel, Ivan Andrew McCracken, Mark Mitchell Gloster, Duane Martin Evans, Tony N. Kfoury
  • Patent number: 8791382
    Abstract: Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: July 29, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Timothy C. Shaw, Rob Huala, David C. Vandervoort, Matthew David Mickelson, Christopher Harry Stoumbos, Joel Lawrence Pelley, Todd David Pleake, Hua Wang
  • Publication number: 20140204514
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140204515
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8780541
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 15, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Patent number: 8780540
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 15, 2014
    Assignee: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140185215
    Abstract: Flexible hinge spine techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard
  • Publication number: 20140185220
    Abstract: Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Microsoft Corporation
    Inventors: David Otto Whitt, III, Eric Joseph Wahl, David C. Vandervoort, Todd David Pleake, Rob Huala, Summer L. Schneider, Robyn Rebecca Reed McLaughlin, Matthew David Mickelson, Joel Lawrence Pelley, Timothy C. Shaw, Ralf Groene, Hua Wang, Christopher Harry Stoumbos, Karsten Aagaard