Patents by Inventor Todd Rearick

Todd Rearick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10996296
    Abstract: Some aspects comprise a tuning system configured to tune a radio frequency coil for use with a magnetic resonance imaging system comprising a tuning circuit including at least one tuning element configured to affect a frequency at which the radio frequency coil resonates, and a controller configured to set at least one value for the tuning element to cause the radio frequency coil to resonate at approximately a Larmor frequency of the magnetic resonance imaging system determined by the tuning system. Some aspects include a method of automatically tuning a radio frequency coil comprising determining information indicative of a Larmor frequency of the magnetic resonance imaging system, using a controller to automatically set at least one value of a tuning circuit to cause the radio frequency coil to resonate at approximately the Larmor frequency based on the determined information.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: May 4, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Todd Rearick, Jeremy Christopher Jordan, Gregory L. Charvat, Matthew Scot Rosen
  • Publication number: 20210116414
    Abstract: A method, computer program product, and system are provided to calibrate a sensor array with a plurality of sensors. The method can include sweeping a voltage of a reference electrode from a first voltage to a second voltage, where the reference electrode is in fluid communication with the sensor array. The output voltage of each of the plurality of sensors can be monitored at one or more voltages within the first and second voltages. An overall average gain of the plurality of sensors can be calculated at each of the one or more voltages. Further, an acquisition window for the sensor array can be determined. The acquisition window can include a maximum distribution of sensors that provides a maximal overall average gain at a particular reference electrode voltage.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 22, 2021
    Applicant: Life Technologies Corporation
    Inventors: Todd REARICK, Melville DAVEY, Mark BEAUCHEMIN
  • Publication number: 20210116520
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Application
    Filed: December 2, 2020
    Publication date: April 22, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Patent number: 10969446
    Abstract: A radio-frequency (RF) coil for use in a low-field magnetic resonance imaging system and methods of making the same are provided. The RF coil may include a substrate having a first and second side and a conductor. The conductor may include a first portion wound around the substrate from the first side to the second side at a first plurality of locations spaced between the first side and the second side and a second portion wound around the substrate from the second side to the first side at a second plurality of locations spaced between the first side and the second side, wherein the first plurality of locations alternate with the second plurality of locations spaced between the first side and the second side.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: April 6, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Publication number: 20210080524
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Application
    Filed: November 10, 2020
    Publication date: March 18, 2021
    Applicant: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Patent number: 10921404
    Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet, a plurality of gradient coils, and at least one radio frequency coil, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: February 16, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10912517
    Abstract: Aspects relate to providing radio frequency components responsive to magnetic resonance signals. According to some aspects, a radio frequency component comprises at least one coil having a conductor arranged in a plurality of turns oriented about a region of interest to respond to corresponding magnetic resonant signal components. According to some aspects, the radio frequency component comprises a plurality of coils oriented to respond to corresponding magnetic resonant signal components. According to some aspects, an optimization is used to determine a configuration for at least one radio frequency coil.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 9, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Gregory L. Charvat, Todd Rearick, Jonathan M. Rothberg
  • Patent number: 10890634
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 12, 2021
    Assignee: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Publication number: 20200408690
    Abstract: Described herein are techniques to reduce or remove the impact of secondary path photons and/or charge carriers on storage bins of an integrated device to improve noise performance, and thus, sample analysis. Some embodiments relate to optical rejection techniques such as including an optical barrier positioned to block at least some photons from reaching the storage bins. Some embodiments relate to electrical rejection techniques such as including an electrical barrier configured to block at least some charge carriers from reaching the storage bins along at least one secondary path. Some embodiments relate to an integrated device in which at least one storage bin is shaped and/or positioned relative to the photodetector to facilitate receipt of some charge carriers (e.g., fluorescent emission charge carriers) and/or photons and to impede receipt of other charge carriers (e.g., noise charge carriers) and/or photons.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Dajiang Yang, Farshid Ghasemi, Keith G. Fife, Todd Rearick, Ali Kabiri, Gerard Schmid, Eric A.G. Webster
  • Patent number: 10871530
    Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 22, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Hadrien A. Dyvorne, Todd Rearick
  • Publication number: 20200385801
    Abstract: Methods, compositions, systems, apparatus, and kits are provided for depositing samples onto surfaces. The samples can include one or more particles, and the surface can include one or more reaction chambers. In some embodiments, the depositing can include the use of companion particles in combination with sample particles.
    Type: Application
    Filed: June 8, 2020
    Publication date: December 10, 2020
    Inventors: Todd REARICK, Jessica Lynn REED, Jason GIOIA, Devin DRESSMAN, Nicholas HAPSHE, Brian REED, John Andrew SHERIDAN
  • Publication number: 20200342952
    Abstract: A method of modeling a background signal when sequencing a polynucleotide strand using sequencing-by-synthesis includes: flowing a series of nucleotide flows onto a reactor array having multiple reaction confinement regions, one or more copies of the polynucleotide strand being located in a loaded reaction confinement region of the reactor array, the loaded reaction confinement region being located in a vicinity of one or more neighboring reaction confinement regions that may or may not be loaded; receiving output signals from the reactor array; and modeling a background signal for the loaded reaction confinement region using the received output signals and a model adapted to account at least for an exchange of ions between the one or more neighboring reaction confinement regions and a headspace adjacent the loaded reaction confinement region and the one or more neighboring reaction confinement regions.
    Type: Application
    Filed: May 11, 2020
    Publication date: October 29, 2020
    Inventor: Todd Rearick
  • Publication number: 20200341085
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations.
    Type: Application
    Filed: July 8, 2020
    Publication date: October 29, 2020
    Applicant: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, JR., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Publication number: 20200337644
    Abstract: Aspects relate to providing radio frequency components responsive to magnetic resonance signals. According to some aspects, a radio frequency component comprises at least one coil having a conductor arranged in a plurality of turns oriented about a region of interest to respond to corresponding magnetic resonant signal components. According to some aspects, the radio frequency component comprises a plurality of coils oriented to respond to corresponding magnetic resonant signal components. According to some aspects, an optimization is used to determine a configuration for at least one radio frequency coil.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Applicant: Hyperfine Research, Inc.
    Inventors: Michael Stephen Poole, Gregory L. Charvat, Todd Rearick, Jonathan M. Rothberg
  • Publication number: 20200335933
    Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
  • Publication number: 20200332358
    Abstract: In one implementation, a method is described. The method includes determining an operational characteristic of sensors of a sensor array. The method further includes selecting a group of sensors in the array based on the operational characteristic of sensors in the group. The method further includes enabling readout of the sensors in the selected group. The method further includes receiving output signals from the enabled sensors.
    Type: Application
    Filed: May 5, 2020
    Publication date: October 22, 2020
    Inventors: Todd Rearick, Mark MILGREW, Jonathan SCHULTZ, Chris PAPALIAS, Kim JOHNSON
  • Patent number: 10809226
    Abstract: A method, computer program product, and system are provided to calibrate a sensor array with a plurality of sensors. The method can include sweeping a voltage of a reference electrode from a first voltage to a second voltage, where the reference electrode is in fluid communication with the sensor array. The output voltage of each of the plurality of sensors can be monitored at one or more voltages within the first and second voltages. An overall average gain of the plurality of sensors can be calculated at each of the one or more voltages. Further, an acquisition window for the sensor array can be determined. The acquisition window can include a maximum distribution of sensors that provides a maximal overall average gain at a particular reference electrode voltage.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: October 20, 2020
    Assignee: Life Technologies Corporation
    Inventors: Todd Rearick, Melville Davey, Mark Beauchemin
  • Patent number: 10775454
    Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 15, 2020
    Assignee: Hyperfire Research, Inc.
    Inventors: Michael Stephen Poole, Cedric Hugon, Hadrien A. Dyvorne, Laura Sacolick, William J. Mileski, Jeremy Christopher Jordan, Alan B. Katze, Jr., Jonathan M. Rothberg, Todd Rearick, Christopher Thomas McNulty
  • Patent number: 10768255
    Abstract: In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: September 8, 2020
    Assignee: Hyperfine Research, Inc.
    Inventors: Jonathan M. Rothberg, Jeremy Christopher Jordan, Michael Stephen Poole, Laura Sacolick, Todd Rearick, Gregory L. Charvat
  • Publication number: 20200264128
    Abstract: Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: June 10, 2019
    Publication date: August 20, 2020
    Inventors: Jonathan M. ROTHBERG, Todd REARICK