Patents by Inventor Todd Roswech

Todd Roswech has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210291177
    Abstract: A reagent carrier includes: a cap configured to fit on an opening of a reaction vessel; and a reagent confined by the cap. The cap may be configured to release the reagent when a user manipulates the cap while the cap is fitted on the opening of the reaction vessel. For example, the reagent may be released when the user twists the cap from a first position to a second position or when the user pushes on a surface of the cap. The cap may be configured to seal the opening of the reaction vessel when the cap is fitted on the opening of the reaction vessel. In some implementations, the cap may be a blister cap containing the reagent. In some implementations, the cap may include a cage containing the reagent. In some implementations, the cap may include a deformable structure containing the reagent.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: Detect, Inc.
    Inventors: Jonathan M. Rothberg, Spencer Glantz, Benjamin Rosenbluth, Todd Roswech, Eric Kauderer-Abrams, Matthew Dyer, Jose Camara, Owen Kaye-Kauderer, John H. Leamon
  • Publication number: 20210155466
    Abstract: A fluidic interconnect includes a first interface including a liquid port, a gas port, and a cradle; a second interface including a liquid port, a gas port, and a swing bar to engage the cradle, a weight of a container attached to one of the first or second interfaces to drive the liquid port of the first interface into connection with the liquid port of the second interface and the gas port of the first interface into connection with the gas port of the second interface.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Todd ROSWECH, Jonathan SCHULTZ, Chun HO
  • Publication number: 20210130891
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 6, 2021
    Inventors: Jonathan SCHULTZ, Todd ROSWECH, Jon A. HOSHIZAKI, Albert L. CARRILLO, James A. BALL
  • Publication number: 20210121874
    Abstract: Embodiments described herein generally relate to apparatuses, cartridges, and pumps for peristaltic pumping of fluids and associated methods, systems, and devices. The pumping of fluids is, in certain cases, an important aspect of a variety of applications, such as bioanalytical applications (e.g., biological sample analysis, sequencing, identification). The inventive features described herein may, in some embodiments, provide an ability to pump fluids in ways that combine certain advantages of robotic fluid handling systems (e.g., automation, programmability, configurability, flexibility) with certain advantages of microfluidics (e.g., small fluid volumes with high fluid resolution, precision, monolithic consumables, limiting of the wetting of components to consumables).
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jonathan C. Schultz, John H. Leamon, Todd Roswech, Xiaxiao Ma
  • Publication number: 20210121875
    Abstract: Embodiments described herein generally relate to apparatuses, cartridges, and pumps for peristaltic pumping of fluids and associated methods, systems, and devices. The pumping of fluids is, in certain cases, an important aspect of a variety of applications, such as bioanalytical applications (e.g., biological sample analysis, sequencing, identification). The inventive features described herein may, in some embodiments, provide an ability to pump fluids in ways that combine certain advantages of robotic fluid handling systems (e.g., automation, programmability, configurability, flexibility) with certain advantages of microfluidics (e.g., small fluid volumes with high fluid resolution, precision, monolithic consumables, limiting of the wetting of components to consumables).
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Applicant: Quantum-Si Incorporated
    Inventors: Jonathan M. Rothberg, Jonathan C. Schultz, John H. Leamon, Todd Roswech, Xiaxiao Ma
  • Patent number: 10934155
    Abstract: A fluidic interconnect includes a first interface including a liquid port, a gas port, and a cradle; a second interface including a liquid port, a gas port, and a swing bar to engage the cradle, a weight of a container attached to one of the first or second interfaces to drive the liquid port of the first interface into connection with the liquid port of the second interface and the gas port of the first interface into connection with the gas port of the second interface.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 2, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Todd Roswech, Jonathan Schultz, Chun Ho
  • Patent number: 10894982
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 19, 2021
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech, Jon A. Hoshizaki, Albert L. Carrillo, James A. Ball
  • Publication number: 20200403486
    Abstract: A rotor assembly includes a rotor plate to rotate around a first axis, a bucket attached to the rotor plate and to rotate around a second axis, and a stop plate to rotate around the first axis between an open position and a closed position. When in the closed position, the stop plate engages the bucket to fix an angular position of the bucket relative to a plane of rotation of the rotor assembly. The rotor assembly further includes a housing for a sensor array component, the housing disposed in the bucket and including a solution inlet, a solution outlet, a transfer basin, a solution retainer disposed between the solution outlet and the transfer basin, and a collection reservoir in fluid communication with the transfer basin. The solution inlet and the solution outlet to engage ports of a flow cell of a sensor array.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventor: Todd ROSWECH
  • Publication number: 20200391201
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 10797567
    Abstract: A rotor assembly includes a rotor plate to rotate around a first axis, a bucket attached to the rotor plate and to rotate around a second axis, and a stop plate to rotate around the first axis between an open position and a closed position. When in the closed position, the stop plate engages the bucket to fix an angular position of the bucket relative to a plane of rotation of the rotor assembly. The rotor assembly further includes a housing for a sensor array component, the housing disposed in the bucket and including a solution inlet, a solution outlet, a transfer basin, a solution retainer disposed between the solution outlet and the transfer basin, and a collection reservoir in fluid communication with the transfer basin. The solution inlet and the solution outlet to engage ports of a flow cell of a sensor array.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 6, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventor: Todd Roswech
  • Patent number: 10766028
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: September 8, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech
  • Publication number: 20200102200
    Abstract: A fluidic interconnect includes a first interface including a liquid port, a gas port, and a cradle; a second interface including a liquid port, a gas port, and a swing bar to engage the cradle, a weight of a container attached to one of the first or second interfaces to drive the liquid port of the first interface into connection with the liquid port of the second interface and the gas port of the first interface into connection with the gas port of the second interface.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 2, 2020
    Inventors: Todd ROSWECH, Jonathan SCHULTZ, Chun HO
  • Patent number: 10427928
    Abstract: A fluidic interconnect includes a first interface including a liquid port, a gas port, and a cradle; a second interface including a liquid port, a gas port, and a swing bar to engage the cradle, a weight of a container attached to one of the first or second interfaces to drive the liquid port of the first interface into connection with the liquid port of the second interface and the gas port of the first interface into connection with the gas port of the second interface.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 1, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Todd Roswech, Jonathan Schultz, Chun Ho
  • Publication number: 20190264274
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventors: Jonathan Schultz, Todd Roswech, Jon A. Hoshizaki, Albert L. Carrillo, James A, Ball
  • Patent number: 10240193
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 26, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech, Jon A. Hoshizaki, Albert L. Carrillo, James A. Ball
  • Publication number: 20190025214
    Abstract: A hand-held bioanalytic instrument is described that can perform massively parallel sample analysis including single-molecule gene sequencing. The instrument includes a pulsed optical source that produces ultrashort excitation pulses and a compact beam-steering assembly. The beam-steering assembly provides automated alignment of excitation pulses to an interchangeable bio-optoelectronic chip that contains tens of thousands of reaction chambers or more. The optical source, beam-steering assembly, bio-optoelectronic chip, and coupling optics register to an alignment structure in the instrument that can form at least one wall of an enclosure and dissipate heat.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 24, 2019
    Applicant: Quantum-Si Incoroprated
    Inventors: Jonathan M. Rothberg, Benjamin Cipriany, Todd Rearick, Paul E. Glenn, Faisal R. Ahmad, Todd Roswech, Brittany Lathrop, Thomas Connolly
  • Publication number: 20180230529
    Abstract: A method of preparing reagents includes inserting a cartridge into an instrument. The cartridge includes a plurality of reagent enclosures disposed in a cavity of the cartridge and exposing a port to an exterior of the cartridge. Each reagent enclosure includes a reagent container including a reagent and an internal cavity defining a compressible volume, an opening defined through the reagent container to the internal cavity. The method further includes connecting a plurality of fluid ports to the openings of the plurality of reagent enclosures; applying a solution through the fluid ports to at least partially fill the plurality of reagent enclosures; and cycling a pressure of the cavity, whereby for each of the reagent enclosures, during increasing pressure, the solution enters the internal cavity of the reagent container, combines with the reagent, and compresses the compressible volume, and during decreasing pressure, the compressible volume decreases and the reagent is ejected through the opening.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 16, 2018
    Inventors: Jonathan SCHULTZ, Todd ROSWECH, Jon A. HOSHIZAKI, Albert L. CARRILLO, James A. BALL
  • Publication number: 20180221865
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Application
    Filed: April 4, 2018
    Publication date: August 9, 2018
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 9937494
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: April 10, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 9901887
    Abstract: An automated template bead preparation system is provided and includes a membrane-based emulsion generation subsystems, a thermal plate and subsystem, and a continuous centrifugation emulsion breaking and templated bead collection subsystem. The emulsion generation subsystem provides uniformity in the preparation of an inverse emulsion and may be used to create large or small volume inverse emulsions rapidly and reproducibly. An emulsion-generating device is provided that can supply a continuous stream of an inverse emulsion to a thermal subsystem, in automated fashion. The thermal subsystem can treat an inverse emulsion passed therethrough. The continuous centrifugation subsystem can continuously break a thermally cycled inverse emulsion and collect template beads formed in the aqueous microreactor droplets of the inverse emulsion.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 27, 2018
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Schultz, John Nobile, Brian Reed, Prasanna Thwar, Todd Roswech, John Andrew Sheridan