Patents by Inventor Tohru Kazawa

Tohru Kazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8036532
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: October 11, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Patent number: 8023511
    Abstract: Congestion caused by a large number of IGMP requests sent from set top boxes at channel switching is prevented in an optical line terminal (OLT). An IGMP processing section in the OLT has a delayed data generation threshold and a delayed data transmission threshold. When the number of ONTS participating in a multicast group is increased, the OLT generates a delayed multicast group for video data. The delayed multicast group having a few second delay accommodates a new user. With this, the end time of a highly popular program and a commercial start time are shifted among users to prevent, in the OLT, congestion caused by IGMP requests sent for channel switching at an identical time point.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: September 20, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kenta Komiya, Ryosuke Kurata, Tohru Kazawa
  • Publication number: 20110211837
    Abstract: There is a need to recover an ONU from a sleep state for communication with the PON before a specified sleep cancel time in a short period of time without degrading the band use efficiency. An OLT manages an electric state of each ONU connected to a PON. When at least one ONU is in sleep mode, the OLT transmits a grant to allocate a band for a sleep cancel report to the ONU. When the sleep-mode ONU requires communication, the ONU transmits the sleep cancel report to the OLT using the band for the sleep cancel report. When receiving the sleep cancel report, the OLT changes the managed ONU to a normal state and resumes the communication with the PON.
    Type: Application
    Filed: January 10, 2011
    Publication date: September 1, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Jun Sugawa, Hiroki Ikeda, Tohru Kazawa
  • Patent number: 8005362
    Abstract: In order to be able to moderate the inclination of the PON burst reception characteristics and to improve the FEC effect, a first offset is used in a ranging window field, and a second offset, which is lower than the first offset value, is used in a burst data field other than the ranging window field.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: August 23, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Norihiro Sakamoto, Yusuke Yajima, Tohru Kazawa
  • Publication number: 20110200326
    Abstract: In a WDM-PON system wherein a plurality of ONUs transfer signals by sharing wavelengths, one wavelength dedicated to a ranging procedure is set, and the ranging is performed with only the dedicated wavelength, so as to measure reciprocating delay times. At the other wavelengths, transmission signals from a plurality of ONUs are transferred in time division multiplexing based on the obtained reciprocating delay times. An OLT includes a burst receiver circuit for only the wavelength dedicated to the ranging, and subsequently to the ranging, the OLT adjusts transmission amplitudes and transmission phases for the ONUs, so as to equalize received amplitudes and received phases in the OLT. For this purpose, the OLT includes means for measuring the amplitudes and phases of received signals, as the burst receiver circuit, and it includes a table for managing the received amplitudes and received phases of the respective ONUs.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 18, 2011
    Inventors: Tohru Kazawa, Yusuke Yajima, Masaki Oohira
  • Publication number: 20110170871
    Abstract: In a light reception element such as an APD (Avalanche Photo Diode) used for receiving a high-speed and weak optical signal, it is possible to prevent the phenomenon of distortion of a signal inputted after a large-level light is received. A PON (Passive Optical Network) system includes an OLT (Optical Line Terminal) which can impartially and effectively transmit light reception data to each ONU (Optical Network Unit). According to a light reception amplitude received by each ONU, an inter-frame gap of an appropriate length is assigned for each ONU. The OLT includes a unit for measuring and accumulating the reception light amplitude and data on the inter-frame gap of an appropriate length decided in advance according to the characteristic of the light reception device and generates a grant value for assuring an inter-frame gap of an appropriate length by using the both information.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: HITACHI, LTD.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Akihiko Tsuchiya, Yoshinobu Morita
  • Patent number: 7962037
    Abstract: Provided is an ONU that suppresses transmission of a useless multicast control message to a PON section and enables a communication bandwidth of the PON section to be effectively used. The ONU of the PON system has a multicast group management table that shows a correspondence between a multicast group identifier and an address of a user terminal participating in a multicast group. When the ONU receives a request message of participation in the multicast group from the user terminal, the ONU registers the correspondence between the multicast group identifier indicated by the received message and the user terminal address. A new received message is deleted without being sent to the OLT if another user terminal address is registered already, along with a correspondence with the same multicast group identifier, in the multicast group management table.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 14, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Masayuki Takase
  • Patent number: 7957647
    Abstract: In a WDM-PON system wherein a plurality of ONUs transfer signals by sharing wavelengths, one wavelength dedicated to a ranging procedure is set, and the ranging is performed with only the dedicated wavelength, so as to measure reciprocating delay times. At the other wavelengths, transmission signals from a plurality of ONUs are transferred in time division multiplexing based on the obtained reciprocating delay times. An OLT includes a burst receiver circuit for only the wavelength dedicated to the ranging, and subsequently to the ranging, the OLT adjusts transmission amplitudes and transmission phases for the ONUs, so as to equalize received amplitudes and received phases in the OLT. For this purpose, the OLT includes means for measuring the amplitudes and phases of received signals, as the burst receiver circuit, and it includes a table for managing the received amplitudes and received phases of the respective ONUs.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Yusuke Yajima, Masaki Oohira
  • Patent number: 7936992
    Abstract: In a light reception element such as an APD (Avalanche Photo Diode) used for receiving a high-speed and weak optical signal, it is possible to prevent the phenomenon of distortion of a signal inputted after a large-level light is received. A PON (Passive Optical Network) system includes an OLT (Optical Line Terminal) which can impartially and effectively transmit light reception data to each ONU (Optical Network Unit). According to a light reception amplitude received by each ONU, an inter-frame gap of an appropriate length is assigned for each ONU. The OLT includes a unit for measuring and accumulating the reception light amplitude and data on the inter-frame gap of an appropriate length decided in advance according to the characteristic of the light reception device and generates a grant value for assuring an inter-frame gap of an appropriate length by using the both information.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: May 3, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Akihiko Tsuchiya, Yoshinobu Morita
  • Publication number: 20110091211
    Abstract: In a GPON system conforming to ITU-T Recommendations G.984.3, an optical line terminal is provided which has an active bandwidth allocation function that preferentially puts small bandwidth signals in a particular segment of a frame, e.g., at a head of the frame, to prevent fragmentations that may occur particularly when allocating small bandwidths of about 100 kbits/s.
    Type: Application
    Filed: December 28, 2010
    Publication date: April 21, 2011
    Applicant: Hitachi, Ltd.
    Inventors: Tohru KAZAWA, Kenichi Sakamoto, Ryosuke Nishino
  • Patent number: 7908390
    Abstract: A packet forwarding apparatus and network system for providing different types of bandwidth control services to the user; in which a packet forwarding apparatus for transferring data comprises an interface unit for sending and receiving packets, and a traffic shaper for controlling the packet transmission timing and a packet switch for sending an output to the interface unit as the destination of the received packet; and the traffic shaper uses a token bucket algorithm when transmitting a packet to guarantee the minimum frame rate, and uses a leaky bucket algorithm when limiting the peak frame rate.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: March 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Masayuki Takase, Yoshihiro Ashi, Masahiko Mizutani, Tohru Kazawa, Kenichi Sakamoto, Taishi Shinagawa
  • Patent number: 7889990
    Abstract: In a GPON system conforming to ITU-T Recommendations G.984.3, an optical line terminal is provided which has an active bandwidth allocation function that preferentially puts small bandwidth signals in a particular segment of a frame, e.g., at a head of the frame, to prevent fragmentations that may occur particularly when allocating small bandwidths of about 100 kbits/s.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: February 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Kenichi Sakamoto, Ryosuke Nishino
  • Patent number: 7873277
    Abstract: In a PON system with WDM, at the time of initial setting, each ONU negotiates with an OLT, and automatically acquires a wavelength which can be used by the ONU. One wavelength for negotiation of assigned wavelength is fixed as a default, and a newly connected ONU first uses the wavelength. The OLT 200 includes a plurality of light sources for downstream communication. The ONU 300 includes a wavelength variable filter selectively receiving one of wavelengths of downstream communication, and a wavelength variable light source selectively emitting light of one of plural wavelengths for upstream communication. The ONU 300 uses a transmission wavelength (for example, ?u32) for negotiation and transmits a wavelength assignment request 1000 to the OLT 200. The OLT 200 selects a wavelength ?u1 to be assigned from unused wavelengths, and transmits wavelength information to the ONU 300. The OLT 200 and the ONU 300 communicates using the notified wavelengths.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: January 18, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Kenichi Sakamoto, Ryosuke Nishino
  • Publication number: 20100296811
    Abstract: There are provided multiple candidates for FEC codes selectable for each of the ONTs. An OLT is provided with: means for storing redundancy and a code length of each FEC code in a table; means for selecting an FEC code; means for encoding or decoding data using the selected FEC code; means for calculating a bandwidth in consideration for the FEC redundancy and the code length with reference to the table during band assignment calculation; and means for notifying the destination ONT of the selected FEC code.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 25, 2010
    Applicant: HITACHI, LTD.
    Inventors: Masaki Ohira, Tohru Kazawa, Yusuke Yajima, Akihiko Tsuchiya
  • Patent number: 7840137
    Abstract: A station-side apparatus adapted for use in a passive optical network (PON) system is disclosed, which remotely collects inside information of optical network terminals (ONTs) even before completion of start-up of an optical network unit (ONU), permits an obstruction-detected ONU to send out an emergency notification message to the station-side apparatus, e.g., optical line terminal (OLP), and permits the OLT that received this message to interrupt the transmission of an upload signal toward another ONU after the elapse of a fixed length of time while at the same time receiving information from the obstruction-suffering ONU to thereby facilitate cut-and-divide or “segmentation” of obstruction. A subscriber-side device for use in the PON system is also disclosed.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: November 23, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Kenichi Sakamoto, Ryosuke Nishino
  • Publication number: 20100290783
    Abstract: A master station includes an optical transmission interface for transmitting signals to a plurality of slave stations at a first transfer rate or a second transfer rate which is higher than the first one, packet buffers for accumulating the signals addressed to each of the plurality of slave stations, and a control unit for determining transmission timings and transfer rates of the signals on the basis of an amount of the signals accumulated in the packet buffers, transmitting the signals with the determined timings and rates, and notifying each of the slave stations about the determined timings and rates. Each of the slave stations includes an optical reception interface for receiving the signals of the first transfer rate or the second transfer rate, and a control unit for controlling the optical reception interface on the basis of the timings and rates which the slave stations is notified.
    Type: Application
    Filed: May 11, 2010
    Publication date: November 18, 2010
    Applicant: HITACHI, LTD.
    Inventors: Tohru KAZAWA, Norihiro SAKAMOTO, Masaki OHIRA
  • Publication number: 20100239255
    Abstract: An OLT of a station-side device in a PON system, the OLT including: an MPCP control unit for receiving bandwidth requirements from each of a plurality of ONUs of home-side devices; a bandwidth assignment period calculation unit for calculating the following bandwidth assignment period for each request source based on the received bandwidth requirements for each request source; a dynamic bandwidth assignment calculation unit for calculating the following bandwidth assignment for each request source based on the received bandwidth requirements for each request source; and the MPCP control unit for transmitting transmission allowance based on the calculated bandwidth assignment to each of the plurality of ONUs.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 23, 2010
    Inventors: Hiroki IKEDA, Tohru Kazawa
  • Publication number: 20100221007
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 2, 2010
    Applicant: HITACHI, LTD.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Publication number: 20100202612
    Abstract: An optical network system including an OLT and ONUs is provided that can prevent the loss of a multicast signal. When receiving an encryption key generation request from the OLT, the ONU generates an encryption key, and transmits the generated encryption key to the OLT. When receiving a notice of timing from the OLT, the ONU updates the encryption key of a belonging group. When receiving a report message from a STB through the ONU, the OLT analyzes the report message, stores a group that the STB belongs to as well as the ONU in a second table, and transmits the encryption key generation request to the ONU. When receiving the encryption key from the ONU, the OLT further stores the encryption key in the second table, and transmits to the ONU a notice of the timing in which the encryption key is valid.
    Type: Application
    Filed: December 10, 2009
    Publication date: August 12, 2010
    Inventors: Taiki Nema, Tohru Kazawa, Ryosuke Kurata
  • Patent number: 7773880
    Abstract: An optical access system capable of avoiding cutoffs or interruption in the periodically transmitted signals that occur during the ranging time is provided. A first method to avoid signal cutoffs is to stop periodic transmit signals at the transmitter during the ranging period, and transmit all the periodic transmit signals together when the ranging ends, and buffer the signals at the receiver to prepare for ranging. A second method is to fix definite periods ahead of time for performing ranging, then cluster the multiple periodic transmit signals together in sets at the transmitter and send them, and then disassemble those sets back into signals at the receiver. The transmitting and receiving is then controlled so that the transmit periods do not overlap with the ranging periods. In this way an optical access system is provided that can send and receive signals requiring periodic transmissions without interruption even during ranging operation.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Yoshihiro Ashi, Tohru Kazawa, Ryosuke Nishino, Masayuki Takase, Masahiko Mizutani