Patents by Inventor Tohru Kazawa

Tohru Kazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100158527
    Abstract: In a PON system, an OLT periodically transmits a channel resource information block specifying a carrier wavelength and a spreading code on a first downstream channel to which a spread-spectrum spreader having a first spreading code is applied; one of ONUs receives the channel resource information block with a spread-spectrum despreader having the first spreading code and transmits a connection request to the OLT, using the carrier wavelength and the spreading code specified by the channel resource information block; the OLT having received the connection request transmits a new channel resource information block specifying a carrier wavelength and a spreading code to be used on an upstream data channel to the requester ONU through the first channel; and the requester ONU transmits data, using the carrier wavelength and the spreading code specified by the new channel resource information block.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 24, 2010
    Applicant: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Toshiki Sugawara, Tohru Kazawa, Yoshihiro Ashi
  • Publication number: 20100150554
    Abstract: A PON system capable of utilizing the bandwidth of an optical transmission channel in the PON section. In a PON system including an OLT and a plurality of ONUs, the OLT has: a downstream frame processing unit that removes at least part of the header information in a layer 2 header from a downstream frame received from a wide area network, and converts the remaining frame portion into a frame having a header specific to the PON section; and a downstream frame processing unit that extracts a downstream frame portion to be transferred to a user terminal, from a received frame from a PON, and adds the layer 2 header information deleted in the OLT.
    Type: Application
    Filed: February 16, 2010
    Publication date: June 17, 2010
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Hideki Endo
  • Patent number: 7734178
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: June 8, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Patent number: 7725031
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 25, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7711268
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 4, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Publication number: 20100086304
    Abstract: A transmitting apparatus includes a plurality of code spreaders different in spreading code, a reception processing unit that selectively distributes transmission data to the plurality of code spreaders, a plurality of optical transmitters each of which that transmit a code-spread signal to an optical fiber as a CDMA optical signal of a carrier wavelength different from that of the other optical transmitters, and a signal multiplexing unit that selectively supplies outputs of the plurality of code spreaders to the plurality of optical transmitters, and a receiving apparatus includes an optical receiver that receives a wavelength-division-multiplexed CDMA optical signal from the optical fiber, and a plurality of despreaders connected to the optical receiver and different in spreading code, wherein each of the despreaders reproduces a CDMA signal corresponding to its spreading code from an output signal of the optical receiver.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 8, 2010
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Masahiko Mizutani, Yoshihiro Ashi, Shinya Sasaki, Tohru Kazawa
  • Publication number: 20100080558
    Abstract: The passive optical network includes a master station and slave stations connected via an optical fiber network including an optical splitter and a plurality of optical fibers. The master station includes a bandwidth control unit which decides a volume of a transmission signal to be granted to each slave station in every first period and in accordance with a request from the slave station, and a transmission timing control unit which decides, in one of a plurality of second periods and in accordance with the decided volume of the signal, transmission timing in which the slave station should transmit a signal. When the signal is to be transmitted by division over the plurality of second periods, the bandwidth control unit or the transmission timing control unit is controlled based on a volume of a signal to be attached by division processing, so that the granted signal can be transmitted in the first period.
    Type: Application
    Filed: February 18, 2009
    Publication date: April 1, 2010
    Inventors: Tohru Kazawa, Yusuke Yajima, Taishi Shinagawa
  • Publication number: 20100067910
    Abstract: Provided is an ONU that suppresses transmission of a useless multicast control message to a PON section and enables a communication bandwidth of the PON section to be effectively used. The ONU of the PON system has a multicast group management table that shows a correspondence between a multicast group identifier and an address of a user terminal participating in a multicast group. When the ONU receives a request message of participation in the multicast group from the user terminal, the ONU registers the correspondence between the multicast group identifier indicated by the received message and the user terminal address. A new received message is deleted without being sent to the OLT if another user terminal address is registered already, along with a correspondence with the same multicast group identifier, in the multicast group management table.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 18, 2010
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Masayuki Takase
  • Publication number: 20100067913
    Abstract: In a passive optical network system in which signals from a master station to plural slave stations are time-division multiplexed and transmitted, the slave stations different in transmission speed are mixedly contained. The master station (OLU) performs ranging for each transmission speed, and grasps all the slave stations different in transmission speed for each transmission speed, and generates a frame including signals of a suitable transmission speed corresponding to each slave station. When the frame is generated, in a downstream signal in which signals of plural transmission speeds are mixed, a dummy signal is set at a place where the transmission speed is changed, and a time necessary to follow a change in level of a received signal due to a change in optical level caused when the transmission speed is changed is secured. Thereby, each ONU avoids a reception error occurring in the time necessary to follow.
    Type: Application
    Filed: February 18, 2009
    Publication date: March 18, 2010
    Inventors: Masao Niibe, Tohru Kazawa, Takeshi Kiyose, Ryosuke Nishino
  • Patent number: 7680414
    Abstract: A Passive Optical Network system implementing a parent station capable of receiving high-speed burst signals transmitted from a plurality of subsidiary stations to a parent station, with excellent bandwidth utilization efficiency in the link from the stations to the parent. The system is provided with a configuration in which, when launched or an addition of a new subsidiary station, the parent stores threshold values appropriate for the received signals on the basis of the strength of the received signal for each subsidiary station, from among a plurality of preset threshold value candidates, and in response to the parent station's sending of a transmission grant with respect to each subsidiary station each time the subsidiary station transmitting optical signals changes, the stored threshold value corresponding to the subsidiary station is set in the receiver circuit.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 16, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima
  • Patent number: 7676127
    Abstract: In a PON system, an OLT periodically transmits a channel resource information block specifying a carrier wavelength and a spreading code on a first downstream channel to which a spread-spectrum spreader having a first spreading code is applied; one of ONUs receives the channel resource information block with a spread-spectrum despreader having the first spreading code and transmits a connection request to the OLT, using the carrier wavelength and the spreading code specified by the channel resource information block; the OLT having received the connection request transmits a new channel resource information block specifying a carrier wavelength and a spreading code to be used on an upstream data channel to the requester ONU through the first channel; and the requester ONU transmits data, using the carrier wavelength and the spreading code specified by the new channel resource information block.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 9, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Masahiko Mizutani, Toshiki Sugawara, Tohru Kazawa, Yoshihiro Ashi
  • Patent number: 7675936
    Abstract: A PON system capable of utilizing the bandwidth of an optical transmission channel in the PON section. In a PON system including an OLT and a plurality of ONUs, the OLT has: a downstream frame processing unit that removes at least part of the header information in a layer 2 header from a downstream frame received from a wide area network, and converts the remaining frame portion into a frame having a header specific to the PON section; and a downstream frame processing unit that extracts a downstream frame portion to be transferred to a user terminal, from a received frame from a PON, and adds the layer 2 header information deleted in the OLT.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: March 9, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Hideki Endo
  • Publication number: 20100034534
    Abstract: In a PON, at the time of ranging, an OLT (a master station) measures an optical level of a signal from at least an ONU (a slave station) capable of communicating at plural transmission speeds. The OLT determines the transmission speed applied to the ONU according to the measured level. Incidentally, the ONU may measure an optical level of a ranging request signal and determine the transmission speed. At a normal operation, when the OLT sends information of plural different transmission speeds to the ONU, a timing when a next frame reaches and transmission speed information are notified to the ONU. Based on the timing, the ONU receives only data of the transmission speed that can be handled. Besides, the OLT switches the transmission speed to receive data based on a grant designation transmitted from the plural ONUs to the OLT.
    Type: Application
    Filed: February 20, 2009
    Publication date: February 11, 2010
    Inventors: Masao NIIBE, Masahiko MIZUTANI, Tohru KAZAWA
  • Publication number: 20100020690
    Abstract: Congestion caused by a large number of IGMP requests sent from set top boxes at channel switching is prevented in an optical line terminal (OLT). An IGMP processing section in the OLT has a delayed data generation threshold and a delayed data transmission threshold. When the number of ONTS participating in a multicast group is increased, the OLT generates a delayed multicast group for video data. The delayed multicast group having a few second delay accommodates a new user. With this, the end time of a highly popular program and a commercial start time are shifted among users to prevent, in the OLT, congestion caused by IGMP requests sent for channel switching at an identical time point.
    Type: Application
    Filed: June 23, 2009
    Publication date: January 28, 2010
    Inventors: Kenta Komiya, Ryosuke Kurata, Tohru Kazawa
  • Publication number: 20090310964
    Abstract: There is provided an abnormal light cut-off system in which even when a high power light is inputted from an optical fiber connected to a user side apparatus by a malicious user or an accident, a trouble rate is low, the abnormal light is cut off at high sensitivity, and security is high.
    Type: Application
    Filed: February 12, 2009
    Publication date: December 17, 2009
    Inventors: Toshiki Sugawara, Yusuke Yajima, Tohru Kazawa
  • Patent number: 7630637
    Abstract: Provided is an ONU that suppresses transmission of a useless multicast control message to a PON section and enables a communication bandwidth of the PON section to be effectively used. The ONU of the PON system has a multicast group management table that shows a correspondence between a multicast group identifier and an address of a user terminal participating in a multicast group. When the ONU receives a request message of participation in the multicast group from the user terminal, the ONU registers the correspondence between the multicast group identifier indicated by the received message and the user terminal address. A new received message is deleted without being sent to the OLT if another user terminal address is registered already, along with a correspondence with the same multicast group identifier, in the multicast group management table.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: December 8, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Masahiko Mizutani, Takeshi Shibata, Tohru Kazawa, Yoshihiro Ashi, Masanobu Kobayashi, Masayuki Takase
  • Patent number: 7620325
    Abstract: A transmission apparatus for use in fixed bandwidth communications and variable bandwidth communications. The transmission apparatus has a memory unit, which stores information contained in a frame and indicating the amount of data to be transmitted from a terminal device, a computing unit, which calculates a bandwidth amount to be assigned to the terminal device based on the data amount, and a transmission unit, which sends the calculated assigned bandwidth amount to the terminal device. The transmission apparatus is characterized in that the computing unit calculates bandwidth amounts to be assigned to different types of flow of which different transmission qualities are requested according to a priority level that is set to each flow type. The transmission apparatus is also characterized in that bandwidth is controlled by designating, instead of a necessary bandwidth amount, transmission starting timing and transmission ending timing, particularly for fixed bandwidth communication data.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: November 17, 2009
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Masahiko Mizutani, Yoshihiro Ashi, Masayuki Takase, Kenichi Sakamoto, Atsushi Iwamura, Tohru Kazawa, Norihiro Sakamoto
  • Publication number: 20090214211
    Abstract: In a light reception element such as an APD (Avalanche Photo Diode) used for receiving a high-speed and weak optical signal, it is possible to prevent the phenomenon of distortion of a signal inputted after a large-level light is received. A PON (Passive Optical Network) system includes an OLT (Optical Line Terminal) which can impartially and effectively transmit light reception data to each ONU (Optical Network Unit). According to a light reception amplitude received by each ONU, an inter-frame gap of an appropriate length is assigned for each ONU. The OLT includes a unit for measuring and accumulating the reception light amplitude and data on the inter-frame gap of an appropriate length decided in advance according to the characteristic of the light reception device and generates a grant value for assuring an inter-frame gap of an appropriate length by using the both information.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 27, 2009
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Tohru KAZAWA, Masaki OHIRA, Yusuke YAJIMA, Akihiko TSUCHIYA, Yoshinobu MORITA
  • Publication number: 20090210553
    Abstract: A packet forwarding apparatus and network system for providing different types of bandwidth control services to the user; in which a packet forwarding apparatus for transferring data comprises an interface unit for sending and receiving packets, and a traffic shaper for controlling the packet transmission timing and a packet switch for sending an output to the interface unit as the destination of the received packet; and the traffic shaper uses a token bucket algorithm when transmitting a packet to guarantee the minimum frame rate, and uses a leaky bucket algorithm when limiting the peak frame rate.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 20, 2009
    Inventors: Masayuki Takase, Yoshihiro Ashi, Masahiko Mizutani, Tohru Kazawa, Kenichi Sakamoto, Taishi Shinagawa
  • Publication number: 20090202242
    Abstract: A passive optical network system (PON) has a plurality of OLTs and ONUs with different transmission rates. OLTs with different transmission rates share information of priority frames and destinations, and determine timing for frame transmission to ONUs so that the signal from each of the OLTs does not collide when multiplied in a splitter. OLTs transmit the data to the ONU as a burst signal to prevent the signals with different rates from colliding. ONU acquires the information of the following burst frames. ONU receives only the signal addressed to the own ONU or with the transmission rate of own ONU, therefore errors in ONUs can be avoided. OLT receives only the signal with the transmission rate of own OLT from ONUs based on the transmission timing from the ONUs shared by the line terminators, errors in OLTs can be avoided.
    Type: Application
    Filed: May 15, 2008
    Publication date: August 13, 2009
    Inventors: Masao NIIBE, Tohru Kazawa, Yusuke Yajima, Takeshi Kiyose, Masahiko Mizutani