Patents by Inventor Tom N. Kalnes

Tom N. Kalnes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7982076
    Abstract: A process has been developed for producing diesel boiling range fuel from renewable feedstocks such as plant oils, animal fats and oils, and greases. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide a diesel boiling range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the treatment zone to increase the hydrogen solubility of the reaction mixture.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Terry L. Marker, Peter Kokayeff, Suheil F. Abdo, Tom N. Kalnes
  • Publication number: 20110131867
    Abstract: A process has been developed for producing diesel boiling range fuel or fuel blending component from renewable feedstocks such as plant oils and greases. The process involves treating a renewable feedstock by hydrogenating and deoxygenating i.e. decarboxylating and/or hydrodeoxygenating to provide a hydrocarbon fraction useful as a diesel fuel. The hydrocarbon fraction is isomerized to improve cold flow properties. At least one interstage stream of the hydrogenating and deoxygenating reaction zone is heat exchanged with the feed to the isomerization reaction zone, and/or the effluent of the hydrogenating and deoxygenating reaction zone is heat exchanged with the feed to the isomerization reaction zone.
    Type: Application
    Filed: February 17, 2011
    Publication date: June 9, 2011
    Applicants: UOP LLC, ENI S.P.A.
    Inventors: Tom N. Kalnes, John P. Brady, Marco Di Stanislao
  • Patent number: 7951984
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 31, 2011
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Patent number: 7935324
    Abstract: The present invention involves a catalytic process for purifying a gas stream comprising purifying the gas stream at a temperature from about 250° to 550° C. by removing sulfur compounds and including a gas shift reaction to convert carbon monoxide to carbon dioxide to produce a partially purified gas stream. The warm gas stream purification involves COS hydrolysis and hydrogenation to H2S, the removal of H2S, and a CO gas shift to convert CO to CO2 to produce a partially purified stream. Then the carbon dioxide and other impurities are removed from the partially purified gas stream.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: Manuela Serban, Tom N. Kalnes, Kurt M. Vanden Bussche, John P. Brady, Robert B. James, Jr.
  • Patent number: 7915460
    Abstract: A process has been developed for producing diesel boiling range fuel or fuel blending component from renewable feedstocks such as plant oils and greases. The process involves treating a renewable feedstock by hydrogenating and deoxygenating i.e. decarboxylating and/or hydrodeoxygenating to provide a hydrocarbon fraction useful as a diesel fuel. The hydrocarbon fraction is isomerized to improve cold flow properties. At least one interstage stream of the hydrogenating and deoxygenating reaction zone is heat exchanged with the feed to the isomerization reaction zone, and/or the effluent of the hydrogenating and deoxygenating reaction zone is heat exchanged with the feed to the isomerization reaction zone.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: March 29, 2011
    Assignees: UOP LLC, ENI S.p.A.
    Inventors: Tom N. Kalnes, John P. Brady, Marco Di Stanislao
  • Publication number: 20110028771
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Application
    Filed: October 12, 2010
    Publication date: February 3, 2011
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Publication number: 20110024327
    Abstract: A process has been developed for producing diesel boiling range fuel from renewable feedstocks such as plant oils, animal fats and oils, and greases. The process involves treating a renewable feedstock by hydrogenating and deoxygenating to provide a diesel boiling range fuel hydrocarbon product. If desired, the hydrocarbon product can be isomerized to improve cold flow properties. A portion of the hydrocarbon product is recycled to the treatment zone to increase the hydrogen solubility of the reaction mixture.
    Type: Application
    Filed: October 6, 2010
    Publication date: February 3, 2011
    Applicant: UOP LLC
    Inventors: Terry L. Marker, Peter Kokayeff, Suheil F. Abdo, Tom N. Kalnes
  • Publication number: 20110027141
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Application
    Filed: October 12, 2010
    Publication date: February 3, 2011
    Applicant: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Patent number: 7834227
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 16, 2010
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Patent number: 7807114
    Abstract: The present invention provides a reactor system having: (1) a plurality of reactors connected in fluid flow communication and having at least one pair of reactors separated by an interstage position; (2) a line for supplying a reactant feed stream separately to an inlet of more than one of the plurality of reactors; and (3) a diverter in fluid communication with the interstage position and capable of directing a first portion of a product stream exiting one reactor in said pair of reactors to a first location and a second portion of the product flow stream to an inlet of another reactor in said pair of reactors.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: October 5, 2010
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Tom N. Kalnes, Carl J. Stevens, Steven M. Poklop
  • Publication number: 20100200458
    Abstract: One exemplary embodiment can be a process for improving a hydrotreated stream for lubricating a machine. The hydrotreated stream can include an effective amount of one or more saturated hydrocarbons. Generally, the process includes hydrogenating the hydrotreated stream having no more than about 300 ppm, by weight, sulfur based on the weight of the stream in a hydrogenation reaction zone to produce a product stream having no more than about 5 ppm, by weight, sulfur.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Inventor: Tom N. Kalnes
  • Publication number: 20100143225
    Abstract: The present invention involves a catalytic process for purifying a gas stream comprising purifying the gas stream at a temperature from about 250° to 550° C. by removing sulfur compounds and including a gas shift reaction to convert carbon monoxide to carbon dioxide to produce a partially purified gas stream. The warm gas stream purification involves COS hydrolysis and hydrogenation to H2S, the removal of H2S, and a CO gas shift to convert CO to CO2 to produce a partially purified stream. Then the carbon dioxide and other impurities are removed from the partially purified gas stream.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 10, 2010
    Inventors: Manuela Serban, Tom N. Kalnes, Kurt M. Vanden Bussche, John P. Brady, Robert B. James, JR.
  • Publication number: 20100135883
    Abstract: This invention relates to a catalyst material, and its method of making and manufacture, useful for a diversity of chemical production processes as well as various emission control processes. More specifically, it relates to a catalyst composition, preferably comprising a metal oxide felt substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface, which can be used in the removal of sulfur and sulfur compounds from hot gases as well as acting to trap solid particulates and trace metals within these hot gases.
    Type: Application
    Filed: September 8, 2009
    Publication date: June 3, 2010
    Applicant: UOP LLC
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Tom N. Kalnes, Kurt M. Vanden Bussche
  • Publication number: 20100122939
    Abstract: The recovery of solids, and particularly solid particulates used as catalysts in slurry hydroprocessing, from asphaltene containing hydrocarbons is improved by controlling asphaltene precipitation. The formation of agglomerates of the solid particulates, having an increased diameter, results in the presence of precipitated asphaltenes, possibly due to flocculation. Asphaltene precipitation is controlled by varying process parameters or introducing additional diluent or flush streams that change the polarity of an asphaltene containing liquid product recovered from an effluent of a slurry hydroprocessing reaction zone.
    Type: Application
    Filed: November 15, 2008
    Publication date: May 20, 2010
    Inventors: Lorenz J. Bauer, Tom N. Kalnes, James F. McGehee
  • Publication number: 20100087693
    Abstract: Improved processing of an oxygenate-containing feedstock for increased production or yield of light olefins. Such processing involves oxygenate conversion to olefins and subsequent cracking of heavier olefins wherein at least a portion of the products from each of the reactors is elevated in pressure, using a common compressor, prior to being routed to a common product fractionation and recovery section. In one particular embodiment, the cracked product gas can be treated to remove acid gas therefrom. In another embodiment, the olefin cracking reactor is a moving bed reactor.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 8, 2010
    Applicant: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, JR., Daniel H. Wei, Bryan K. Glover
  • Patent number: 7687671
    Abstract: Improved processing of an oxygenate-containing feedstock for increased production or yield of light olefins. Such processing involves oxygenate conversion to olefins and subsequent cracking of heavier olefins wherein at least a portion of the products from each of the reactors is elevated in pressure, using a common compressor, prior to being routed to a common product fractionation and recovery section. In one particular embodiment, the cracked product gas can be treated to remove acid gas therefrom. In another embodiment, the olefin cracking reactor is a moving bed reactor.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, Jr., Daniel H. Wei, Bryan K. Glover
  • Patent number: 7682500
    Abstract: A process for the conversion of a feedstock containing light cycle oil and vacuum gas oil to produce naphtha boiling range hydrocarbons and a higher boiling range hydrocarbonaceous stream having a reduced concentration of sulfur.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 23, 2010
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Publication number: 20100048965
    Abstract: Improved processing of an oxygenate-containing feedstock for increased production or yield of light olefins. Such processing involves oxygenate conversion to olefins and subsequent cracking of heavier olefins wherein at least a portion of the products from each of the reactors is elevated in pressure, using a common compressor, prior to being routed to a common product fractionation and recovery section. In one particular embodiment, the cracked product gas can be treated to remove acid gas therefrom. In another embodiment, the olefin cracking reactor is a moving bed reactor.
    Type: Application
    Filed: October 30, 2009
    Publication date: February 25, 2010
    Applicant: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, JR., Daniel H. Wei, Bryan K. Glover
  • Patent number: 7663012
    Abstract: The average cycle propylene selectivity of an oxygenate to propylene (OTP) process using one or more fixed beds of a dual-function oxygenate conversion catalyst is substantially enhanced by the use of moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of fixed bed technology coupled with the selection of a catalyst on-stream cycle time of 200 hours or less. Those provisions hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of propylene average cycle yield at essentially start-of-cycle levels. The propylene average cycle yield improvement enabled by the present invention over that achieved by the fixed bed system of the prior art using the same or a similar catalyst system is of the order of about 1.5 to 5.5 wt-% or more.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: February 16, 2010
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Daniel H. Wei, Bryan K. Glover
  • Publication number: 20100021357
    Abstract: Improved processing of an oxygenate-containing feedstock for increased production or yield of light olefins. Such processing involves oxygenate conversion to olefins and subsequent cracking of heavier olefins wherein at least a portion of the products from each of the reactors is elevated in pressure, using a common compressor, prior to being routed to a common product fractionation and recovery section. In one particular embodiment, the cracked product gas can be treated to remove acid gas therefrom. In another embodiment, the olefin cracking reactor is a moving bed reactor.
    Type: Application
    Filed: October 1, 2009
    Publication date: January 28, 2010
    Applicant: UOP LLC
    Inventors: Tom N. Kalnes, Robert B. James, JR., Daniel H. Wei, Bryan K. Glover