Patents by Inventor Tomio Otsuki

Tomio Otsuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230349035
    Abstract: A sputtering target according to one embodiment is an integrated sputtering target comprising a target portion and a backing plate portion, both of them being made of copper and unavoidable impurities, wherein a Vickers hardness Hv is 90 or more, and wherein a flat ratio of crystal grains in a cross section orthogonal to a sputtering surface is 0.35 or more and 0.65 or less.
    Type: Application
    Filed: June 9, 2023
    Publication date: November 2, 2023
    Inventors: Tomio Otsuki, Yasushi Moril
  • Patent number: 11718907
    Abstract: A sputtering target according to one embodiment is an integrated sputtering target comprising a target portion and a backing plate portion, both of them being made of copper and unavoidable impurities, wherein a Vickers hardness Hv is 90 or more, and wherein a flat ratio of crystal grains in a cross section orthogonal to a sputtering surface is 0.35 or more and 0.65 or less.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 8, 2023
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomio Otsuki, Yasushi Morii
  • Publication number: 20200032385
    Abstract: A sputtering target according to one embodiment is an integrated sputtering target comprising a target portion and a backing plate portion, both of them being made of copper and unavoidable impurities, wherein a Vickers hardness Hv is 90 or more, and wherein a flat ratio of crystal grains in a cross section orthogonal to a sputtering surface is 0.35 or more and 0.65 or less.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 30, 2020
    Inventors: Tomio Otsuki, Yasushi Morii
  • Patent number: 10494712
    Abstract: Provided is a copper alloy sputtering target, wherein, based on charged particle activation analysis, the copper alloy sputtering target has an oxygen content of 0.6 wtppm or less, or an oxygen content of 2 wtppm or less and a carbon content of 0.6 wtppm or less. Additionally provided is a method for manufacturing a copper alloy sputtering target, wherein a copper raw material is melted in a vacuum or an inert gas atmosphere, a reducing gas is thereafter introduced into the melting atmosphere, an alloy element is subsequently added to a molten metal for alloying, and an obtained ingot is processed into a target shape. The present invention aims to provide a copper alloy sputtering target that generates few particles during sputtering, and a method for manufacturing such a sputtering target.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: December 3, 2019
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yasushi Morii, Tomio Otsuki
  • Patent number: 10297429
    Abstract: Provided is a high-purity copper-chromium alloy sputtering target comprising 0.1 to 10 wt % of Cr and the remainder being Cu and inevitable impurities, wherein when the number of precipitated Cr grains in a 100 ?m square area is counted at different five areas randomly selected on the surface of the target, the difference between the largest and the smallest numbers of counted precipitated Cr grains is less than 40. The term “precipitated Cr grains” refers to the grains each having a Cr content of 70% or more and having a grain size of 1 to 20 ?m. Thus, a thin film having excellent uniformity can be formed by adding an appropriate amount of a Cr element to copper and reducing the in-plane Cr variation of the sputtering target. In particular, the invention provides a high-purity copper-chromium alloy sputtering target that is useful for improving the yield and the reliability of semiconductor products, which have been progressing in miniaturization and integration.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: May 21, 2019
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomio Otsuki, Atsushi Fukushima
  • Patent number: 10276356
    Abstract: A copper alloy sputtering target having a composition comprising 1.0 to 5.0 at % of Mn, 0.1 to 4.0 at % of Al, and remainder being Cu and unavoidable impurities, wherein a compositional variation in a plane of the sputtering target is within 20%. The present invention provides a copper alloy sputtering target capable of forming a semiconductor element wiring material, particularly a stable and uniform seed layer which is free of aggregation during copper electroplating, and which has superior sputter deposition properties, and a semiconductor element wiring formed using the copper alloy sputtering target.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 30, 2019
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomio Otsuki, Kenichi Nagata
  • Publication number: 20190085442
    Abstract: Provided is a sputtering target formed from copper or a copper alloy, and the sputtering target contains either argon or hydrogen, or both, each in an amount of 1 wtppm or more and 10 wtppm or less. An object of the embodiment of the present invention is to provide a copper or copper alloy sputtering target which is capable of stably maintaining discharge even under conditions such as low pressure and low gas flow rate where it is difficult to continuously maintain sputtering discharge.
    Type: Application
    Filed: March 7, 2017
    Publication date: March 21, 2019
    Inventors: Tomio Otsuki, Kenichi Nagata, Yasushi Morii
  • Patent number: 9909196
    Abstract: A high purity copper-cobalt alloy sputtering target containing 0.1 to 20 at % of Co, and remainder being Cu and unavoidable impurities, wherein a size (dimension) of precipitates in the target structure is 10 ?m or less, and a number of precipitates is 500 precipitates/mm2 or less. It is thereby possible to provide a high purity copper-cobalt alloy sputtering target capable of inhibiting the generation of particles during sputtering, and in particular improving the yield and reliability of semiconductor products that are being subject to further miniaturization and higher integration.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: March 6, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Nagata, Tomio Otsuki
  • Publication number: 20170342546
    Abstract: Provided is a copper alloy sputtering target, wherein, based on charged particle activation analysis, the copper alloy sputtering target has an oxygen content of 0.6 wtppm or less, or an oxygen content of 2 wtppm or less and a carbon content of 0.6 wtppm or less. Additionally provided is a method for manufacturing a copper alloy sputtering target, wherein a copper raw material is melted in a vacuum or an inert gas atmosphere, a reducing gas is thereafter introduced into the melting atmosphere, an alloy element is subsequently added to a molten metal for alloying, and an obtained ingot is processed into a target shape. The present invention aims to provide a copper alloy sputtering target that generates few particles during sputtering, and a method for manufacturing such a sputtering target.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 30, 2017
    Inventors: Yasushi Morii, Tomio Otsuki
  • Patent number: 9773651
    Abstract: A high-purity copper sputtering target, wherein a Vickers hardness of a flange part of the target is in a range of 90 to 100 Hv, a Vickers hardness of an erosion part in the central area of the target is in a range of 55 to 70 Hv, and a crystal grain size of the erosion part is 80 ?m or less. This invention relates to a high-purity copper sputtering target that does not need to be bonded to a backing plate (BP), and aims to provide a high-purity copper sputtering target capable of forming a thin film having superior uniformity by enhancing a strength (hardness) of the flange part of the target, and reducing an amount of warpage of the target. Moreover, the uniformity of the film thickness is improved by adjusting the (111) orientation ratio of the erosion part and the flange part in the target.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: September 26, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Tomio Otsuki, Shigeru Watanabe
  • Patent number: 9704695
    Abstract: A backing plate integrated sputtering target includes a flange part having a Vicker's hardness (Hv) of 90 or more and a 0.2% yield stress of 6.98×107 N/m2 or more. Enhancing the mechanical strength of only the flange part of the target inhibits the target from being deformed during sputtering, and further, does not vary the original sputtering characteristics. Consequently, the target can form a thin film having excellent uniformity. This can improve the yield and the reliability of semiconductor products, which have been progressing in miniaturization and integration.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 11, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Patent number: 9382612
    Abstract: Provided are a lanthanum target for sputtering which has a recrystallized structure with an average crystal grain size of 100 ?m or less and has no spotty macro patterns on the surface; and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to hot upset forging to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering which has no spotty macro patterns on the surface, and a method of producing the same.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: July 5, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Patent number: 9347130
    Abstract: Provided are a lanthanum target for sputtering which has a Vickers hardness of 60 or more and no spotty macro patterns on the surface, and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to upset forging at 300 to 500° C. to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering that has no spotty macro patterns on the surface, and a method of producing the same.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: May 24, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Publication number: 20150354047
    Abstract: A high purity copper-cobalt alloy sputtering target containing 0.1 to 20 at % of Co, and remainder being Cu and unavoidable impurities, wherein a size (dimension) of precipitates in the target structure is 10 ?m or less, and a number of precipitates is 500 precipitates/mm2 or less. It is thereby possible to provide a high purity copper-cobalt alloy sputtering target capable of inhibiting the generation of particles during sputtering, and in particular improving the yield and reliability of semiconductor products that are being subject to further miniaturization and higher integration.
    Type: Application
    Filed: February 19, 2014
    Publication date: December 10, 2015
    Inventors: Kenichi Nagata, Tomio Otsuki
  • Patent number: 9165750
    Abstract: A high purity copper-manganese alloy sputtering target containing 0.05 to 20 wt % of Mn and, excluding additive elements, remainder being Cu and unavoidable impurities, wherein the target contains 0.001 to 0.06 wtppm of P and 0.005 to 5 wtppm of S, and further contains Ca and Si, and a total content of P, S, Ca, and Si is 0.01 to 20 wtppm. The incorporation of appropriate amounts of Mn as well as Ca, P, Si, and S in copper improves the machinability that is required in the stage of producing a target to facilitate the manufacture (workability) of the target, improves the smoothness of the target surface, and inhibits the generation of particles during sputtering. Thus, provided is a high purity copper-manganese alloy sputtering target which is particularly useful for improving the yield and reliability of semiconductor products that progress toward miniaturization and integration.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: October 20, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Publication number: 20150279638
    Abstract: A copper alloy sputtering target having a composition comprising 1.0 to 5.0 at % of Mn, 0.1 to 4.0 at % of Al, and remainder being Cu and unavoidable impurities, wherein a compositional variation in a plane of the sputtering target is within 20%. The present invention provides a copper alloy sputtering target capable of forming a semiconductor element wiring material, particularly a stable and uniform seed layer which is free of aggregation during copper electroplating, and which has superior sputter deposition properties, and a semiconductor element wiring formed using the copper alloy sputtering target.
    Type: Application
    Filed: February 28, 2014
    Publication date: October 1, 2015
    Inventors: Tomio Otsuki, Kenichi Nagata
  • Patent number: 9090970
    Abstract: Provided is a high-purity copper-manganese-alloy sputtering target comprising 0.05 to 20 wt % of Mn and the remainder being Cu and inevitable impurities. The high-purity copper-manganese-alloy sputtering target is characterized in that the in-plane variation (CV value) in Mn concentration of the target is 3% or less. It is thus possible to form a thin film having excellent uniformity by adding an appropriate amount of a Mn element to copper and reducing the in-plane variation of the sputtering target. In particular, there is provided a high-purity copper-manganese-alloy sputtering target which is useful for improving the yield and the reliability of semiconductor products which are making progress in a degree of refinement and integration.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: July 28, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Publication number: 20140367253
    Abstract: A high-purity copper sputtering target, wherein a Vickers hardness of a flange part of the target is in a range of 90 to 100 Hv, a Vickers hardness of an erosion part in the central area of the target is in a range of 55 to 70 Hv, and a crystal grain size of the erosion part is 80 ?m or less. This invention relates to a high-purity copper sputtering target that does not need to be bonded to a backing plate (BP), and aims to provide a high-purity copper sputtering target capable of forming a thin film having superior uniformity by enhancing a strength (hardness) of the flange part of the target, and reducing an amount of warpage of the target. Moreover, the uniformity of the film thickness is improved by adjusting the (111) orientation ratio of the erosion part and the flange part in the target.
    Type: Application
    Filed: December 25, 2012
    Publication date: December 18, 2014
    Inventors: Takeo Okabe, Tomio Otsuki, Shigeru Watanabe
  • Publication number: 20140360869
    Abstract: Provided is a high-purity copper-chromium alloy sputtering target comprising 0.1 to 10 wt % of Cr and the remainder being Cu and inevitable impurities, wherein when the number of precipitated Cr grains in a 100 ?m square area is counted at different five areas randomly selected on the surface of the target, the difference between the largest and the smallest numbers of counted precipitated Cr grains is less than 40. The term “precipitated Cr grains” refers to the grains each having a Cr content of 70% or more and having a grain size of 1 to 20 ?m. Thus, a thin film having excellent uniformity can be formed by adding an appropriate amount of a Cr element to copper and reducing the in-plane Cr variation of the sputtering target. In particular, the invention provides a high-purity copper-chromium alloy sputtering target that is useful for improving the yield and the reliability of semiconductor products, which have been progressing in miniaturization and integration.
    Type: Application
    Filed: January 21, 2013
    Publication date: December 11, 2014
    Inventors: Tomio Otsuki, Atsushi Fukushima
  • Publication number: 20140318953
    Abstract: A backing plate integrated sputtering target includes a flange part having a Vicker's hardness (Hv) of 90 or more and a 0.2% yield stress of 6.98×107 N/m2 or more. Enhancing the mechanical strength of only the flange part of the target inhibits the target from being deformed during sputtering, and further, does not vary the original sputtering characteristics. Consequently, the target can form a thin film having excellent uniformity. This can improve the yield and the reliability of semiconductor products, which have been progressing in miniaturization and integration.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 30, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima