Patents by Inventor Tomio Otsuki

Tomio Otsuki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140284211
    Abstract: A high purity copper-manganese alloy sputtering target containing 0.05 to 20 wt % of Mn and, excluding additive elements, remainder being Cu and unavoidable impurities, wherein the target contains 0.001 to 0.06 wtppm of P and 0.005 to 5 wtppm of S, and further contains Ca and Si, and a total content of P, S, Ca, and Si is 0.01 to 20 wtppm. The incorporation of appropriate amounts of Mn as well as Ca, P, Si, and S in copper improves the machinability that is required in the stage of producing a target to facilitate the manufacture (workability) of the target, improves the smoothness of the target surface, and inhibits the generation of particles during sputtering. Thus, provided is a high purity copper-manganese alloy sputtering target which is particularly useful for improving the yield and reliability of semiconductor products that progress toward miniaturization and integration.
    Type: Application
    Filed: January 4, 2013
    Publication date: September 25, 2014
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Publication number: 20140158532
    Abstract: Provided is a high-purity copper-manganese-alloy sputtering target comprising 0.05 to 20 wt. % of Mn, 2 wt ppm or less of C, and the remainder being Cu and inevitable impurities, wherein in formation of a film on a wafer by sputtering the target, the number of particles composed of C, at least one element selected from Mn, Si, and Mg, or a compound composed of C and at least one element selected from Mn, Si, and Mg and having a diameter of 0.20 ?m or more is 30 or less on average. Particle generation during sputtering can be effectively suppressed by thus adding an appropriate amount of Mn element to copper and controlling the amount of carbon. In particular, a high-purity copper-manganese-alloy sputtering target that is useful for forming semiconductor copper alloy line having a self-diffusion suppression function is provided.
    Type: Application
    Filed: September 5, 2012
    Publication date: June 12, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Publication number: 20140110849
    Abstract: A copper-titanium alloy sputtering target comprising 3 at % or more and less than 15 at % of Ti and a remainder made up of Cu and unavoidable impurities, wherein a variation (standard deviation) in hardness is within 5.0 and a variation (standard deviation) in electric resistance is within 1.0 in an in-plane direction of the target. Provided are: a sputtering target for forming a copper-titanium alloy wiring line for semiconductors capable of causing the copper alloy wiring line for semiconductors to be equipped with a self-diffusion suppressive function, effectively preventing contamination around the wiring line caused by diffusion of active Cu, improving electromigration (EM) resistance, corrosion resistance and the like, enabling the arbitrary formation of a barrier layer in a simple manner, and uniformizing film properties; a copper-titanium alloy wiring line for semiconductors; and a semiconductor element and a device each equipped with the semiconductor wiring line.
    Type: Application
    Filed: February 15, 2012
    Publication date: April 24, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Tomio Otsuki, Atsushi Fukushima
  • Publication number: 20140097084
    Abstract: Provided is a high-purity copper-manganese-alloy sputtering target comprising 0.05 to 20 wt % of Mn and the remainder being Cu and inevitable impurities. The high-purity copper-manganese-alloy sputtering target is characterized in that the in-plane variation (CV value) in Mn concentration of the target is 3% or less. It is thus possible to form a thin film having excellent uniformity by adding an appropriate amount of a Mn element to copper and reducing the in-plane variation of the sputtering target. In particular, there is provided a high-purity copper-manganese-alloy sputtering target which is useful for improving the yield and the reliability of semiconductor products which are making progress in a degree of refinement and integration.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 10, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kenichi Nagata, Tomio Otsuki, Takeo Okabe, Nobuhito Makino, Atsushi Fukushima
  • Patent number: 8663440
    Abstract: The object of this invention is to provide a high quality titanium target for sputtering capable of reducing the impurities that cause generation of particles and abnormal discharge, which is free from fractures and cracks during high power sputtering (high rate sputtering), and capable of stabilizing the sputtering properties and effectively suppressing the generation of particles upon deposition. This invention is able to solve foregoing problems using a high purity titanium target for sputtering containing, as additive components, 3 to 10 mass ppm of S and 0.5 to 3 mass ppm of Si, and in which the purity of the target excluding additive components and gas components is 99.995 mass percent or higher.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: March 4, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Publication number: 20120073964
    Abstract: The object of this invention is to provide a high quality titanium target for sputtering capable of reducing the impurities that cause generation of particles and abnormal discharge, which is free from fractures and cracks during high power sputtering (high rate sputtering), and capable of stabilizing the sputtering properties and effectively suppressing the generation of particles upon deposition. This invention is able to solve foregoing problems using a high purity titanium target for sputtering containing, as additive components, 3 to 10 mass ppm of S and 0.5 to 3 mass ppm of Si, and in which the purity of the target excluding additive components and gas components is 99.995 mass percent or higher.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Publication number: 20110308940
    Abstract: Provided are a lanthanum target for sputtering which has a recrystallized structure with an average crystal grain size of 100 ?m or less and has no spotty macro patterns on the surface; and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to hot upset forging to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering which has no spotty macro patterns on the surface, and a method of producing the same.
    Type: Application
    Filed: March 17, 2010
    Publication date: December 22, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Tomio Otsuki
  • Publication number: 20110290644
    Abstract: Provided are a lanthanum target for sputtering which has a Vickers hardness of 60 or more and no spotty macro patterns on the surface, and a method of producing a lanthanum target for sputtering, wherein lanthanum is melted and cast to produce an ingot, the ingot is subject to knead forging at a temperature of 300 to 500° C. and subsequently subject to upset forging at 300 to 500° C. to form the shape into a rough target shape, and this is additionally subject to machining to obtain a target. This invention aims to offer technology for efficiently and stably providing a lanthanum target for sputtering that has no spotty macro patterns on the surface, and a method of producing the same.
    Type: Application
    Filed: March 17, 2010
    Publication date: December 1, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Tomio Otsuki