Patents by Inventor Tomoaki Yoshida

Tomoaki Yoshida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200275815
    Abstract: An autonomous vacuum cleaner that can reduce the footprint in a standby state is provided. An autonomous vacuum cleaner (1) includes a vacuum cleaner body (2) and a charging station (6). The charging station (6) has a hook (64) that latches a latched member (16) provided to a rear side of the vacuum cleaner body (2), and a lift driver (61) that raises and lowers the hook (64), and is configured to be capable of storing the vacuum cleaner body (2) in a standing state where the vacuum cleaner body (2) is hoisted and the rear side is oriented upward.
    Type: Application
    Filed: September 13, 2017
    Publication date: September 3, 2020
    Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
  • Publication number: 20200245837
    Abstract: An autonomous vacuum cleaner is provided which can accurately acquire surrounding information related to target objects in the surroundings. An autonomous vacuum cleaner (1) includes: a vacuum cleaner body (2); a front sensor (31) configured to detect a target object at a far distance from the vacuum cleaner body (2); and a contact sensor (32) configured to detect a target object at a near distance from the vacuum cleaner body (2). A controller (5) is configured including a surrounding information generator (45) configured to generate surrounding information related to target objects around the vacuum cleaner body (2), on the basis of far information detected by the front sensor (31) and near information detected by the contact sensor (32).
    Type: Application
    Filed: October 13, 2017
    Publication date: August 6, 2020
    Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
  • Publication number: 20200089249
    Abstract: Provided is a self-propelled vacuum configured so that depending on an obstacle, the self-propelled vacuum can move over the obstacle without performing avoidance operation to shorten cleaning time. A self-propelled vacuum 1 includes a vacuum body 2, a suction unit 5 for sucking dust and the like on a floor surface F, a traveling drive unit 4 configured to drive wheels 21, a front sensor 51 configured to sense an obstacle S in the front in a traveling direction, and a vehicle height adjustment unit 6 configured to move the wheels 21 up and down to adjust the vehicle height of the vacuum body 2. In a case where the traveling drive unit 4 is driven and the front sensor 51 senses the obstacle S during self-propelling, the vehicle height adjustment unit 6 increases the vehicle height to a predetermined height, and thereafter, the self-propelled vacuum 1 moves over the obstacle S while the vehicle height is being adjusted such that a distance to the obstacle S is held within a predetermined range.
    Type: Application
    Filed: June 7, 2017
    Publication date: March 19, 2020
    Inventors: Takayuki FURUTA, Masahiro TOMONO, Hideaki YAMATO, Tomoaki YOSHIDA, Masaharu SHIMIZU, Yu OKUMURA, Kengo TODA, Takashi KODACHI, Kiyoshi IRIE, Yoshitaka HARA, Kazuki OGIHARA
  • Patent number: 10361807
    Abstract: An OLT configures combinations of wavelength pairs used for upstream and downstream signals, in a wavelength multiplexing optical communication system which performs single-core bidirectional transmission of a plurality of upstream and downstream signals, in such a way that the maximum value of the chromatic dispersion delay amount calculated from each wavelength pair is less than the maximum value of the chromatic dispersion delay amounts calculated when the combinations of wavelength pairs used for upstream and downstream signals are both allocated from the short wave side.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 23, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Katsuhisa Taguchi, Tomoaki Yoshida, Kota Asaka, Shunji Kimura
  • Patent number: 10230485
    Abstract: In a case where a wavelength to be assigned to a subscriber-side device, to which a downstream wavelength has been assigned, is to be changed from the currently used (Source) downstream wavelength to a different changeover target (Target) downstream wavelength, a downstream wavelength changeover instruction message that indicates the change target wavelength is generated. In a case where a wavelength to be assigned to the subscriber-side device, to which an upstream wavelength has been assigned, is to be changed from the currently used (Source) upstream wavelength to a different changeover target (Target) upstream wavelength, an upstream wavelength changeover instruction message that indicates the change target wavelength is generated. The downstream wavelength changeover instruction message and the upstream wavelength changeover instruction message are respectively independently generated, and only the wavelength for which the wavelength changeover instruction message was generated is changed.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 12, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki Yoshida, Kota Asaka, Shunji Kimura
  • Patent number: 10211944
    Abstract: A station-side device performs transmission and reception of an optical signal to and from a subscriber-side device, and includes a communication control unit configured to perform optical signal communication using a plurality of wavelengths by wavelength division multiplexing and time division multiplexing; and a registration unit configured to set an acceptance period in at least one wavelength among the plurality of wavelengths, to perform a new registration of a subscriber-side device in response to a registration request of the subscriber-side device received within the acceptance period, and not to set the acceptance period in at least one other wavelength among the plurality of wavelengths.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 19, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki Yoshida, Shigeru Kuwano
  • Patent number: 10211945
    Abstract: A station-side device of the present invention includes: a wavelength change instruction unit that issues, to a subscriber-side device, a wavelength change instruction to change a transfer-source wavelength assigned to the subscriber-side device to a transfer-target wavelength different from the transfer-source wavelength; a transfer-source port that transmits and receives an optical signal of the transfer-source wavelength; a transfer-target port that transmits and receives an optical signal of the transfer-target wavelength; a transfer-source port monitoring unit that detects a connection between the transfer-source port and the subscriber-side device; a transfer-target port monitoring unit that detects a connection between the transfer-target port and the subscriber-side device; a transfer-source timer that counts, at the transfer-source port, an elapsed time from a predetermined starting time in response to the wavelength change instruction, and ends the counting of the elapsed time in a case where change
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: February 19, 2019
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventor: Tomoaki Yoshida
  • Publication number: 20180351685
    Abstract: An OLT configures combinations of wavelength pairs used for upstream and downstream signals, in a wavelength multiplexing optical communication system which performs single-core bidirectional transmission of a plurality of upstream and downstream signals, in such a way that the maximum value of the chromatic dispersion delay amount calculated from each wavelength pair is less than the maximum value of the chromatic dispersion delay amounts calculated when the combinations of wavelength pairs used for upstream and downstream signals are both allocated from the short wave side.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 6, 2018
    Inventors: Katsuhisa Taguchi, Tomoaki Yoshida, Kota Asaka, Shunji Kimura
  • Patent number: 10009137
    Abstract: An optical communication system of the present invention switches a communication wavelength from a current communication wavelength to a auxiliary communication wavelength when an abnormality occurs in a communication wavelength between a station-side device and any one of a plurality of subscriber devices. Further, this optical communication system switches a communication wavelength used for communication between the subscriber device and the station-side device that perform communication using the auxiliary communication wavelength from the auxiliary communication wavelength back to the current communication wavelength when communication is recovered from an abnormality in the current communication wavelength.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: June 26, 2018
    Assignee: Nippon Telegraph And Telephone Corporation
    Inventors: Tomoaki Yoshida, Shin Kaneko, Shunji Kimura
  • Publication number: 20180145788
    Abstract: A station-side device performs transmission and reception of an optical signal to and from a subscriber-side device, and includes a communication control unit configured to perform optical signal communication using a plurality of wavelengths by wavelength division multiplexing and time division multiplexing; and a registration unit configured to set an acceptance period in at least one wavelength among the plurality of wavelengths, to perform a new registration of a subscriber-side device in response to a registration request of the subscriber-side device received within the acceptance period, and not to set the acceptance period in at least one other wavelength among the plurality of wavelengths.
    Type: Application
    Filed: May 24, 2016
    Publication date: May 24, 2018
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki YOSHIDA, Shigeru KUWANO
  • Publication number: 20180131461
    Abstract: In a case where a wavelength to be assigned to a subscriber-side device, to which a downstream wavelength has been assigned, is to be changed from the currently used (Source) downstream wavelength to a different changeover target (Target) downstream wavelength, a downstream wavelength changeover instruction message that indicates the change target wavelength is generated. In a case where a wavelength to be assigned to the subscriber-side device, to which an upstream wavelength has been assigned, is to be changed from the currently used (Source) upstream wavelength to a different changeover target (Target) upstream wavelength, an upstream wavelength changeover instruction message that indicates the change target wavelength is generated. The downstream wavelength changeover instruction message and the upstream wavelength changeover instruction message are respectively independently generated, and only the wavelength for which the wavelength changeover instruction message was generated is changed.
    Type: Application
    Filed: April 20, 2016
    Publication date: May 10, 2018
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki YOSHIDA, Kota ASAKA, Shunji KIMURA
  • Publication number: 20180131462
    Abstract: A station-side device of the present invention includes: a wavelength change instruction unit that issues, to a subscriber-side device, a wavelength change instruction to change a transfer-source wavelength assigned to the subscriber-side device to a transfer-target wavelength different from the transfer-source wavelength; a transfer-source port that transmits and receives an optical signal of the transfer-source wavelength; a transfer-target port that transmits and receives an optical signal of the transfer-target wavelength; a transfer-source port monitoring unit that detects a connection between the transfer-source port and the subscriber-side device; a transfer-target port monitoring unit that detects a connection between the transfer-target port and the subscriber-side device; a transfer-source timer that counts, at the transfer-source port, an elapsed time from a predetermined starting time in response to the wavelength change instruction, and ends the counting of the elapsed time in a case where change
    Type: Application
    Filed: April 20, 2016
    Publication date: May 10, 2018
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventor: Tomoaki YOSHIDA
  • Patent number: 9871614
    Abstract: A transmission start time correction method of a WDM/TDM-PON system includes: a completion instruction procedure in which a station-side subscriber accommodation apparatus issues an instruction using a downstream signal for instructing a subscriber apparatus to perform wavelength switching, the downstream signal including a transmission start time of an upstream signal indicating completion of the wavelength switching of the subscriber apparatus, the upstream signal being transmitted by the subscriber apparatus after the wavelength switching; an instruction completion transmission procedure in which the subscriber apparatus transmits the upstream signal indicating the completion of the wavelength switching at a wavelength after switching at the instructed transmission start time after the wavelength switching is completed in accordance with the instruction; and a transmission start time correction procedure in which the station-side subscriber accommodation apparatus measures a reception time of the upstream
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: January 16, 2018
    Assignee: Nippon Telegraph And Telephone Corporation
    Inventors: Tomoaki Yoshida, Shin Kaneko, Shunji Kimura
  • Patent number: 9816835
    Abstract: An event information memory stores an occurrence time of an event so as to cause the occurrence time of the event to correspond to each of monitoring targets in which the events occurred (or are scheduled to occur) among a plurality of the monitoring targets. Based on position information for displaying each of a plurality of monitoring targets on a general view, a controller instructs control to draw an event display image on the general view so as to cause the event display image to correspond to the monitoring target in which the event occurred (or scheduled to occur), the monitoring target being stored in the event information memory. The event display image includes: a circular portion indicating a predetermined time in a circumferential direction, an indicator indicating a current hour or minute, and an event occurrence time display portion caused to correspond to the occurrence time of the event.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: November 14, 2017
    Assignee: JVC KENWOOD CORPORATION
    Inventors: Katsunori Tagami, Tomoaki Yoshida, Tomonori Nagahama, Yoshihiko Imano, Takeshi Nishiumi, Ichiro Shishido
  • Patent number: 9780867
    Abstract: In an optical communication abnormality-recovery system and method, when an abnormality occurs in transmission and reception of one wavelength of an optical line terminal of a PON system, an optical network unit that is performing communication at a certain wavelength switches the wavelength for performing the communication to another backup wavelength that is instructed in advance. The optical line terminal also performs switching so that the communication is performed using the same backup wavelength as in the optical network unit.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: October 3, 2017
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tomoaki Yoshida, Shin Kaneko, Shunji Kimura
  • Patent number: 9768908
    Abstract: A protection method wherein an ONU switches a reception wavelength to a backup wavelength so as to be logically connected to a backup OSU designated in advance for each ONU when the ONU detects a failure in an OSU to which the ONU is originally assigned, while the ONU keeps on holding its own connection information with the OLT. In the OLT, a backup OSU for the ONU which is originally assigned to the failed OSU is notified of the information on the ONU when the OLT detects a failure in an OSU. In this way, the ONUs which are originally assigned to the failed OSU resumes communication in a short period.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: September 19, 2017
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shin Kaneko, Tomoaki Yoshida, Shunji Kimura
  • Patent number: 9749079
    Abstract: An ONU requests a bandwidth of an uplink signal, and in accordance with this, an OLT calculates a time when the OLT transmits the uplink signal and a transmission duration time and performs an instruction, and a DBA cycle in which the ONU transmits the uplink signal in accordance with the instruction and a dynamic wavelength allocation cycle in which the OLT instructs wavelength switching, and the ONU switches the wavelength and belongs to a different LC are separated. While the ONU switches the wavelength, the DBA cycles can be performed plural times in the ONU whose wavelength is not switched, the switching of the wavelength is confirmed after the wavelength has been switched, and then DBA operation is performed at the switched wavelength.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: August 29, 2017
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki Yoshida, Shinya Tamaki, Shin Kaneko
  • Publication number: 20170207875
    Abstract: An optical communication system of the present invention switches a communication wavelength from a current communication wavelength to a auxiliary communication wavelength when an abnormality occurs in a communication wavelength between a station-side device and any one of a plurality of subscriber devices. Further, this optical communication system switches a communication wavelength used for communication between the subscriber device and the station-side device that perform communication using the auxiliary communication wavelength from the auxiliary communication wavelength back to the current communication wavelength when communication is recovered from an abnormality in the current communication wavelength.
    Type: Application
    Filed: July 23, 2015
    Publication date: July 20, 2017
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki YOSHIDA, Shin KANEKO, Shunji KIMURA
  • Patent number: 9705626
    Abstract: An ONU requests a bandwidth of an uplink signal, and in accordance with this, an OLT calculates a time when the OLT transmits the uplink signal and a transmission duration time and performs an instruction, and a DBA cycle in which the ONU transmits the uplink signal in accordance with the instruction and a dynamic wavelength allocation cycle in which the OLT instructs wavelength switching, and the ONU switches the wavelength and belongs to a different LC are separated. While the ONU switches the wavelength, the DBA cycles can be performed plural times in the ONU whose wavelength is not switched, the switching of the wavelength is confirmed after the wavelength has been switched, and then DBA operation is performed at the switched wavelength.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: July 11, 2017
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki Yoshida, Shinya Tamaki, Shin Kaneko
  • Publication number: 20170170923
    Abstract: A transmission start time correction method of a WDM/TDM-PON system includes: a completion instruction procedure in which a station-side subscriber accommodation apparatus issues an instruction using a downstream signal for instructing a subscriber apparatus to perform wavelength switching, the downstream signal including a transmission start time of an upstream signal indicating completion of the wavelength switching of the subscriber apparatus, the upstream signal being transmitted by the subscriber apparatus after the wavelength switching; an instruction completion transmission procedure in which the subscriber apparatus transmits the upstream signal indicating the completion of the wavelength switching at a wavelength after switching at the instructed transmission start time after the wavelength switching is completed in accordance with the instruction; and a transmission start time correction procedure in which the station-side subscriber accommodation apparatus measures a reception time of the upstream
    Type: Application
    Filed: July 17, 2015
    Publication date: June 15, 2017
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomoaki YOSHIDA, Shin KANEKO, Shunji KIMURA