Patents by Inventor Tomohiko Kitajima
Tomohiko Kitajima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12142475Abstract: Methods of manufacturing memory devices are provided. The methods improve the quality of a selectively deposited silicon-containing dielectric layer. The method comprises selectively depositing a silicon-containing dielectric layer in a recessed region of a film stack. The selectively deposited silicon-containing dielectric layer is then exposed to a high-density plasma and annealed at a temperature greater than 800 ° C. to provide a silicon-containing dielectric film having a wet etch rate of less than 4 ?/min.Type: GrantFiled: February 9, 2022Date of Patent: November 12, 2024Assignee: Applied Materials, Inc.Inventors: Ning Li, Shuaidi Zhang, Mihaela A. Balseanu, Qi Gao, Rajesh Prasad, Tomohiko Kitajima, Chang Seok Kang, Deven Matthew Raj Mittal, Kyu-Ha Shim
-
Publication number: 20240206172Abstract: Described is selective deposition of a silicon nitride (SiN) trap layer to form a memory device. A sacrificial layer is used for selective deposition in order to permit selective trap deposition. The trap layer is formed by deposition of a mold including a sacrificial layer, memory hole (MH) patterning, sacrificial layer recess from MH side, forming a deposition-enabling layer (DEL) on a side of the recess, and selective deposition of trap layer. After removing the sacrificial layer from a slit pattern opening, the deposition-enabling layer (DEL) is converted into an oxide to be used as blocking oxide.Type: ApplicationFiled: January 29, 2024Publication date: June 20, 2024Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Mihaela A. Balseanu
-
Patent number: 11930637Abstract: Described is selective deposition of a silicon nitride (SiN) trap layer to form a memory device. A sacrificial layer is used for selective deposition in order to permit selective trap deposition. The trap layer is formed by deposition of a mold including a sacrificial layer, memory hole (MH) patterning, sacrificial layer recess from MH side, forming a deposition-enabling layer (DEL) on a side of the recess, and selective deposition of trap layer. After removing the sacrificial layer from a slit pattern opening, the deposition-enabling layer (DEL) is converted into an oxide to be used as blocking oxide.Type: GrantFiled: June 14, 2021Date of Patent: March 12, 2024Assignee: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Mihaela A. Balseanu
-
Publication number: 20240038833Abstract: Memory devices and methods of forming memory devices are described. Methods of forming electronic devices are described where carbon is used as the removable mold material for the formation of a DRAM capacitor. A dense, high-temperature (500° C. or greater) PECVD carbon material is used as the removable mold material, e.g., the core material, instead of oxide. The carbon material can be removed by isotropic etching with exposure to radicals of oxygen (O2), nitrogen (N2), hydrogen (H2), ammonia (NH3), and combinations thereof.Type: ApplicationFiled: July 14, 2023Publication date: February 1, 2024Applicant: Applied Materials, Inc.Inventors: Fredrick Fishburn, Tomohiko Kitajima, Qian Fu, Srinivas Guggilla, Hang Yu, Jun Feng, Shih Chung Chen, Lakmal C. Kalutarage, Jayden Potter, Karthik Janakiraman, Deenesh Padhi, Yifeng Zhou, Yufeng Jiang, Sung-Kwan Kang
-
Publication number: 20240021433Abstract: Methods for depositing a hardmask with ions implanted at different tilt angles are described herein. By performing ion implantation to dope an amorphous carbon hardmask at multiple tilt angles, an evenly distributed dopant profiled can be created. The implant tilt angle will determine a dopant profile that enhances the carbon hardmask hardness.Type: ApplicationFiled: October 13, 2022Publication date: January 18, 2024Inventors: Scott FALK, Rajesh PRASAD, Sarah Michelle BOBEK, Harry WHITESELL, Kurt DECKER-LUCKE, Kyu-Ha SHIM, Adaeze OSONKIE, Tomohiko KITAJIMA
-
Publication number: 20230420232Abstract: Methods of manufacturing memory devices are provided. The method comprises pre-cleaning a top surface of a film stack, the film stack comprising alternating layers of a first material layer and a second material layer and having one or more of a memory hole and a slit pattern opening extending through the film stack; exposing the top surface of the film stack to a growth inhibitor; selectively depositing a silicon-containing dielectric layer in a region of the film stack; and densifying the silicon-containing dielectric layer. The processing method is performed in a processing tool without breaking vacuum.Type: ApplicationFiled: September 7, 2023Publication date: December 28, 2023Applicant: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Ning Li, Chang Seok Kang, Naomi Yoshida
-
Publication number: 20230369031Abstract: Methods of manufacturing memory devices are provided. The method comprises pre-cleaning a top surface of a film stack, the film stack comprising alternating layers of a first material layer and a second material layer and having one or more of a memory hole and a slit pattern opening extending through the film stack; exposing the top surface of the film stack to a growth inhibitor; selectively depositing a silicon-containing dielectric layer in a region of the film stack; and densifying the silicon-containing dielectric layer. The processing method is performed in a processing tool without breaking vacuum.Type: ApplicationFiled: March 28, 2023Publication date: November 16, 2023Applicant: Applied Materials, Inc.Inventors: Tomohiko Kitajima, Ning Li, Chang Seok Kang, Naomi Yoshida
-
Publication number: 20230371246Abstract: Described are memory devices having an array region and an extension region adjacent the array region. The array region includes at least two unit cells stacked vertically. The extension region includes a memory stack and a plurality of word line contacts. The memory stack comprises alternating layers of at least one conductive layer, a semiconductor layer, and an insulating layer. The plurality of word line contacts extend through the memory stack to the at least one conductive layer. Each of the plurality of word line contacts have a height that is different than the height of an adjacent word line contact. Each of the plurality of word line contacts has a metallization layer on the top surface. Methods of forming a memory device are described.Type: ApplicationFiled: May 1, 2023Publication date: November 16, 2023Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Sung-Kwan Kang, Gill Yong Lee
-
Patent number: 11818877Abstract: Examples herein relate to three-dimensional (3D) dynamic random access memory (DRAM) and corresponding methods. In an example, a film stack is formed on a substrate. The film stack includes multiple unit stacks, each having, sequentially, a first dielectric layer, a semiconductor layer, and a second dielectric layer. A first opening is formed through the film stack. The second dielectric layer is pulled back from the first opening forming a first lateral recess. A gate structure is formed in the first lateral recess and disposed on a portion of the semiconductor layer. A second opening, laterally disposed from where the first opening was formed, is formed through the film stack. The portion of the semiconductor layer is pulled back from the second opening forming a second lateral recess. A capacitor is formed in a region where the second lateral recess was disposed and contacting the portion of the semiconductor layer.Type: GrantFiled: September 27, 2021Date of Patent: November 14, 2023Assignee: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Sung-Kwan Kang, Fredrick Fishburn, Gill Yong Lee, Nitin K. Ingle
-
Publication number: 20230317845Abstract: Embodiments of the present disclosure include a transistor with a vertical drift region and methods for forming the transistor. The transistor may include a well region of a first conductivity type, a gate region disposed above the well region, and a drift region of a second conductivity type, different from the first conductivity type. The drift region may have a lateral portion disposed above a portion of the well region and laterally adjacent to a semiconductor channel in the well region. The drift region may also have a vertical portion extending vertically from the lateral portion of the drift region.Type: ApplicationFiled: April 5, 2022Publication date: October 5, 2023Inventors: Changseok KANG, Tomohiko KITAJIMA, Gill Yong LEE
-
Patent number: 11749315Abstract: Memory devices are described. The memory devices include a plurality of bit lines extending through a stack of alternating memory layers and dielectric layers. Each of the memory layers comprises a single crystalline-like silicon layer and includes a first word line, a second word line, a first capacitor, and a second capacitor. Methods of forming stacked memory devices are also described.Type: GrantFiled: December 15, 2021Date of Patent: September 5, 2023Assignee: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Sanjay Natarajan, Sung-Kwan Kang, Lequn Liu
-
Publication number: 20230157004Abstract: Memory devices incorporating bridged word lines are described. The memory devices include a plurality of active regions spaced along a first direction, a second direction and a third direction. A plurality of conductive layers is arranged so that at least one conductive layer is adjacent to at least one side of each of the active regions along the third direction. A conductive bridge extends along the second direction to connect each of the conductive layers to one or more adjacent conductive layer. Some embodiments include an integrated etch stop layer. Methods of forming stacked memory devices are also described.Type: ApplicationFiled: January 13, 2023Publication date: May 18, 2023Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Nitin K. Ingle, Sung-Kwan Kang
-
Publication number: 20230146831Abstract: A semiconductor manufacturing process for forming a three-dimensional (3D) memory structure and a semiconductor device having a 3D memory structure is described. The 3D memory structure comprises layers of memory cells with L shaped conductive layers where the L shaped conductive layers of each layer are coupled to metal lines disposed above the top or upper most layer such that the memory cells in each layer can be coupled to control circuitry.Type: ApplicationFiled: September 4, 2022Publication date: May 11, 2023Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Gill Yong Lee, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese
-
Publication number: 20230101155Abstract: A memory device architecture, and method of fabricating a three dimensional device are provided. The memory device architecture may include a plurality of memory blocks, arranged in an array, wherein a given memory block comprises: a cell region, the cell region comprising a three-dimensional array of memory cells, arranged in a plurality of n memory cell layers; and a staircase region, the staircase region being disposed adjacent to at least a first side of the cell region, the staircase region comprising a signal line assembly that is coupled to the three-dimensional array of memory cells.Type: ApplicationFiled: July 19, 2022Publication date: March 30, 2023Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Fred Fishburn, Tomohiko Kitajima, Sung-Kwan Kang, Sony Varghese, Gill Yong Lee
-
Publication number: 20230096309Abstract: Examples herein relate to three-dimensional (3D) dynamic random access memory (DRAM) and corresponding methods. In an example, a film stack is formed on a substrate. The film stack includes multiple unit stacks, each having, sequentially, a first dielectric layer, a semiconductor layer, and a second dielectric layer. A first opening is formed through the film stack. The second dielectric layer is pulled back from the first opening forming a first lateral recess. A gate structure is formed in the first lateral recess and disposed on a portion of the semiconductor layer. A second opening, laterally disposed from where the first opening was formed, is formed through the film stack. The portion of the semiconductor layer is pulled back from the second opening forming a second lateral recess. A capacitor is formed in a region where the second lateral recess was disposed and contacting the portion of the semiconductor layer.Type: ApplicationFiled: September 27, 2021Publication date: March 30, 2023Inventors: Chang Seok KANG, Tomohiko KITAJIMA, Sung-Kwan KANG, Fredrick FISHBURN, Gill Yong LEE, Nitin K. INGLE
-
Patent number: 11594537Abstract: Described are memory devices having stacked DRAM cells, resulting in an increase in DRAM cell bit-density. The area of a unit cell is composed of a capacitor, a cell transistor, an isolation region and a connection region, where every capacitor and active region for the cell capacitor is electrically isolated. The memory cells have supporting bars. Methods of forming a memory device are described. The methods include patterning the isolation region with supporting bars, removing non-insulator layers after isolation region patterning, and filling the opened region with an insulator.Type: GrantFiled: June 22, 2021Date of Patent: February 28, 2023Assignee: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima
-
Patent number: 11587930Abstract: Memory devices incorporating bridged word lines are described. The memory devices include a plurality of active regions spaced along a first direction, a second direction and a third direction. A plurality of conductive layers is arranged so that at least one conductive layer is adjacent to at least one side of each of the active regions along the third direction. A conductive bridge extends along the second direction to connect each of the conductive layers to one or more adjacent conductive layer. Some embodiments include an integrated etch stop layer. Methods of forming stacked memory devices are also described.Type: GrantFiled: January 27, 2021Date of Patent: February 21, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Chang Seok Kang, Tomohiko Kitajima, Nitin K. Ingle, Sung-Kwan Kang
-
Patent number: 11587796Abstract: Memory devices and methods of manufacturing memory devices are provided. The device and methods described suppress oxidation of metal layers exposed to ambient oxygen. After an opening is formed, a nitridation process occurs to nitridate the surface of the exposed metal layer inside the opening. The nitridated region formed on the surface of metal layer inside the opening works as a barrier layer for oxygen diffusion. In addition, the nitridated region works as an electrode for charge trap memory cells.Type: GrantFiled: January 13, 2021Date of Patent: February 21, 2023Assignee: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Sung-Kwan Kang
-
Publication number: 20230040627Abstract: Described is a semiconductor memory device and methods of manufacture. The semiconductor memory device comprises a memory array comprising at least one select-gate-for-drain (SGD) transistor and at least one memory transistor, the memory array having at least one strapping region and at least one strapping contact, the strapping contact connecting a select-gate-for-drain (SGD) transistor to a strapping line.Type: ApplicationFiled: August 2, 2022Publication date: February 9, 2023Applicant: Applied Materials, Inc.Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Sung-Kwan Kang
-
Patent number: 11574924Abstract: Embodiments of the present disclosure provide an apparatus and methods for forming stair-like structures with accurate profiles and dimension control for manufacturing three dimensional (3D) stacked memory cell semiconductor devices. In one embodiment, a memory cell device includes a film stack comprising alternating pairs of dielectric layers and conductive structures horizontally formed on a substrate, and an opening formed in the film stack, wherein the opening is filled with a metal dielectric layer, a multi-layer structure and a center filling layer, wherein the metal dielectric layer in the opening is interfaced with the conductive structure.Type: GrantFiled: March 26, 2021Date of Patent: February 7, 2023Assignee: Applied Materials, Inc.Inventors: Changseok Kang, Tomohiko Kitajima