Patents by Inventor Tomohiko Omura

Tomohiko Omura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070137736
    Abstract: Disclosed is a low alloy steel for oil well pipes which has excellent sulfide stress cracking resistance and is suitable for casing and tubing for oil wells or gas wells. Specifically disclosed is a low alloy steel for oil well pipes containing, in mass %, 0.2-0.35% of C, 0.05-0.5% of Si, 0.05-1.0% of Mn, not more than 0.025% of P,. not more than 0.01% of S, 0.005-0.10% of Al, 0.1-1.0% of Cr, 0.5-1.0% of Mo, 0.002-0.05% of Ti, 0.05-0.3% of V, 0.0001-0.005% of B, not more than 0.01% of N, not more than 0.01% of O (oxygen), 0-0.1% of Nb, 0-0.01% of Ca, 0-0.01% of Mg and 0-0.1% of Zr, and having a half-value breadth (H) and a hydrogen diffusion coefficient (D) (10?6 cm2/s) satisfying the following formula (1): 30H+D?19.5 (1).
    Type: Application
    Filed: December 14, 2006
    Publication date: June 21, 2007
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Tomohiko Omura, Kenji Kobayashi
  • Publication number: 20070012383
    Abstract: A low alloy steel, which has a chemical composition by mass %, of C: 0.1 to 0.55%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, S: 0.0001 to 0.005%, Al: 0.005 to 0.08%, Ti: 0.005 to 0.05%, Cr: 0.1 to 1.5%, Mo: 0.1 to 1%, O: 0.0004 to 0.005%, Ca: 0.0005 to 0.0045%, Nb: 0 to 0.1%, V: 0 to 0.5%, B: 0 to 0.005%, Zr: 0 to 0.10%, P?0.03%, and N?0.006%, with the balance being Fe and impurities, is manufactured by adjusting the value of ([Ti]/47.9)([N]/14)/([Ca])/40.1) satisfies not less than 0.0008 and not more than 0.0066, at the time of melting the said low alloy steel, wherein [Ti], [N] and [Ca] are the contents in the molten steel by mass % of Ti, N and Ca respectively. The thus-manufactured low steel alloy has a high SSC resistance with a yield stress of not less than 758 MPa.
    Type: Application
    Filed: September 19, 2006
    Publication date: January 18, 2007
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Yoshihiko Higuchi
  • Publication number: 20060266448
    Abstract: A high-strength seamless steel pipe for oil wells excellent in sulfide stress cracking resistance which comprises, on the percent by mass basis, C: 0.1 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.0%, Cr: 0.05 to 1.5%, Mo: 0.05 to 1.0%, Al: 0.10% or less, Ti: 0.002 to 0.05% and B: 0.0003 to 0.005%, with a value of equation “C+(Mn/6)+(Cr/5)+(Mo/3)” of 0.43 or more, with the balance being Fe and impurities, and in the impurities P: 0.025% or less, S: 0.010% or less and N: 0.007% or less. The seamless steel pipe may contain a specified amount of one or more element(s) of V and Nb, and/or a specified amount of one or more element(s) of Ca, Mg and REM. The seamless steel pipe can be produced at a low cost by adapting an in-line tube making and heat treatment process having a high production efficiency since a reheating treatment for refinement of grains is not required.
    Type: Application
    Filed: July 28, 2006
    Publication date: November 30, 2006
    Inventors: Yuji Arai, Tomohiko Omura, Keiichi Nakamura
  • Publication number: 20060191605
    Abstract: A duplex stainless steel having excellent pitting resistance and weldability and particularly a duplex stainless steel which does not form minute intermetallic compounds even in a weld heat affected zone is provided. It has a chemical composition comprising C: at most 0.03%, Si: at most 1.0%, Mn: at most 1.5%, P: at most 0.040%, S: at most 0.008%, Cr: 23.0-27.0%, Mo: 2.0-4.0%, Ni: 5.0-9.0%, W: greater than 1.5% up to 5.0%, N: 0.24-0.35%, and a remainder of Fe and impurities and satisfying the relationships PREW=Cr+3.3(Mo+0.5W)+16N is at least 40 and Mo+1.1Ni?12.5 Mo?0.8Ni??1.6 wherein the number of coarse inclusions having the following definition observed in a cross section is at most 10 per mm2. Here, coarse inclusions are defined as inclusions containing at least 20 mass % of Al and having a major diameter of at least 5 micrometers.
    Type: Application
    Filed: December 23, 2005
    Publication date: August 31, 2006
    Inventors: Kazuhiro Ogawa, Tomohiko Omura
  • Publication number: 20060193743
    Abstract: An austenitic stainless steel for use in a hydrogen gas atmosphere comprises, in mass %, C: 0.10% or less, Si: 1.0% or less, Mn: 0.01 to 30%, P: 0.040% or less, S: 0.01% or less, Cr: 15 to 30%, Ni: 5.0 to 30%, Al: 0.10% or less, N: 0.001 to 0.30 % with the balance Fe and inevitable impurities. An X-ray (111) integration intensity of a cross section along the direction rectangular to the working direction is five times that in a random direction or less, and the X-ray integration intensity ratio of a cross section along the working direction satisfies I(220)/I(111)?10. The high strength steel can also contain one or more of the groups of Mo and W; V, Nb, Ta, Ti, Zr and Hf; B; Cu and Co; Mg, Ca, La, Ce, Y, Sm, Pr and Nd.
    Type: Application
    Filed: December 9, 2005
    Publication date: August 31, 2006
    Inventors: Hiroyuki Semba, Masaaki Igarashi, Tomohiko Omura, Mitsuo Miyahara, Kazuhiko Ogawa
  • Publication number: 20060191606
    Abstract: A weld joint having a base material and a weld metal both of an austenitic steel, wherein the weld metal has a chemical composition, in mass %, that C: 0.04% or less, Si: 1.0% or less, Mn: 3% or less, P: 0.02% or less, S: 0.005% or less, Cr: 15 to 25%, Ni: 30% or more, Mo: 10% or less, Nb: 2.5 to 5%, Al: 3.0% or less, Ti: 0.5% or less, and the balance: Fe and inevitable impurities, the contents of Al and Ti satisfying the following: (Ti+Al)>Nb/8. The weld joint is a high strength austenitic steel weld joint which exhibits excellent toughness at a low temperature and excellent resistance to hydrogen embrittlement, which are required for a piping and a vessel for high pressure hydrogen, particularly also in a welded zone.
    Type: Application
    Filed: December 9, 2005
    Publication date: August 31, 2006
    Inventors: Kazuhiko Ogawa, Masaaki Igarashi, Hiroyuki Semba, Tomohiko Omura, Mitsuo Miyahara
  • Publication number: 20060191600
    Abstract: A steel which does not suffer from hydrogen embrittlement contains 0.3-30% of Cr as the base material, and has an oxide film having a thickness of 100 nm or more formed on its surface. The oxide film contains at least two elements selected among Fe, Cr and Al in the form of oxides, respectively in an amount of 5 atom % or more. The oxide film is formed through single-step or two-step heating wherein the steel is heated in the atmosphere at 600-900° C. for not less than 3 minutes but not more than 2 hours if necessary, and then heated in a hydrogen atmosphere at 700-1200° C. for not less than 3 minutes but not more than 2 hours while controlling the water vapor partial pressure within the range from 10?8 to 10?1 MPa. The steel is adapted for use in hydrogen gas environments, such as a container or other hardware.
    Type: Application
    Filed: December 9, 2005
    Publication date: August 31, 2006
    Inventors: Tomohiko Omura, Masaaki Igarashi, Mitsuo Miyahara, Kazuhiro Ogawa, Hiroyuki Semba
  • Patent number: 7074283
    Abstract: A low alloy steel, characterized by consisting of, by mass %, C: 0.2–0.55%, Si: 0.05–0.5%, Mn: 0.1–1%, S: 0.0005–0.01%, O(Oxygen): 0.0010–0.01%, Al: 0.005–0.05%, Ca: 0.0003–0.007%, Ti: 0.005–0.05%, Cr: 0.1–1.5%, Mo: 0.1–1% and Nb: 0.005–0.1%, and the balance Fe and impurities; and also characterized by the impurities whose contents are restricted to P?0.03% and N?0.015%; and further characterized by containing composites of inclusions of not greater than 7 ?m in major axis with appearance frequency of not less than 10 pieces of composites per 0.1 mm2 of the steel cross section, wherein the composite comprises an outer shell of carbonitride of Ti and/or Nb surrounding a nucleus of oxysulfide of Al and Ca. The low alloy steel suppresses pitting caused by inclusions and suppresses SSC induced by pitting.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: July 11, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Tomohiko Omura
  • Publication number: 20060016520
    Abstract: A steel for steel pipes which comprises, on the percent by mass basis, C: 0.2 to 0.7%, Si: 0.01 to 0.8%, Mn: 0.1 to 1.5%, S: 0.005% or less, P: 0.03% or less, Al: 0.0005 to 0.1%, Ti: 0.005 to 0.05%, Ca: 0.0004 to 0.005%, N: 0.007% or less, Cr: 0.1 to 1.5%, Mo: 0.2 to 1.0%, Nb: 0 to 0.1%, Zr: 0 to 0.1%, V: 0 to 0.5% and B: 0 to 0.005%, with the balance being Fe and impurities, in which non-metallic inclusions containing Ca, Al, Ti, N, O, and S are present, and in the said inclusions (Ca %)/(Al %) is 0.55 to 1.72, and (Ca %)/(Ti %) is 0.7 to 19 can be used as a raw material for oil country tubular goods, being used at a greater depth and in severer corrosive circumstances, such as casings and tubings for oil and/or natural gas wells, drilling pipes and drilling collars for excavation, and the like.
    Type: Application
    Filed: July 15, 2005
    Publication date: January 26, 2006
    Inventors: Mitsuhiro Numata, Tomohiko Omura, Yoshihiko Higuchi
  • Patent number: 6958099
    Abstract: A steel material and a steel pipe made by using the same are provided which are to be used in severe oil well environments. Such a highly tough oil well steel pipe can be produced by rolling the base material, quenching the rolling product from the austenite region and tempering the same so that the relationship between the content of Mo [Mo] in the carbides precipitated at austenite grain boundaries and the austenite grain size (according to ASTM E 112) can be defined by the formula (a) given below. In this manner, steel pipes suited for use even under oil well environments becoming more and more severe can be produced while satisfying the requirements that the cost should be rationalized, the productivity improved and energy saved.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: October 25, 2005
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Shigeru Nakamura, Kaori Kawano, Tomohiko Omura, Toshiharu Abe
  • Publication number: 20050211344
    Abstract: A duplex stainless steel containing C, Si, Mn, P, S, Al, Ni, Cr, Mo, N (nitrogen, O (oxygen), Ca, Mg, Cu, B, and W, and the balance Fe and impurities, where a number of oxide-based inclusions, which have a total content of Ca and Mg of 20 to 40% by mass and also have a long diameter of not less than 7 ?m, is not more than a 10 per 1 mm2 of the cross section perpendicular to the working direction, or further, the number of oxide-based inclusions, which have a content of S of not less than 15% by mass and also have a long diameter of not less than 1 ?m, is not more than 10 per 0.1 mm2 of the cross section perpendicular to the working direction. Particularly, the contents of Cu, B and W are desirably 0.2 to 2%, 0.001 to 0.01%, and 0.1 to 4% by mass, respectively.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 29, 2005
    Inventors: Tomohiko Omura, Satoshi Matsumoto
  • Publication number: 20050178478
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, and excellent in stress corrosion cracking resistance, and a container or other device for high-pressure hydrogen gas, which is made of the said stainless steel, are provided. The stainless steel is characterized in that it consists of, by mass %, C: not more than 0.02%, Si: not more than 1.0%, Mn: 3 to 30%, Cr: more than 22% but not more than 30%, Ni: 17 to 30%, V: 0.001 to 1.0%, N: 0.10 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the following relationship [1]: 5Cr+3.
    Type: Application
    Filed: April 18, 2005
    Publication date: August 18, 2005
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Publication number: 20050178477
    Abstract: A high-strength stainless steel, having good mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment, is used as a container or other device for high-pressure hydrogen gas, and consists of, by mass %, C: not more than 0.04%, Si: not more than 1.0%, Mn: 7 to 30%, Cr: 15 to 22%, Ni: 5 to 20%, V: 0.001 to 1.0%, N: 0.20 to 0.50% and Al: not more than 0.10%, and the balance Fe and impurities. Among the impurities, P is not more than 0.030%, S is not more than 0.005%, and Ti, Zr and Hf are not more than 0.01% respectively, and the contents of Cr, Mn and N satisfy the relationship, 2.5Cr+3.4Mn?300N. The weld metal of the welded joint of the container or other device made of the said stainless steel satisfies the relationship, ?11?Nieq?1.1×Creq??8.
    Type: Application
    Filed: April 18, 2005
    Publication date: August 18, 2005
    Inventors: Masaaki Igarashi, Hiroyuki Semba, Mitsuo Miyahara, Kazuhiro Ogawa, Tomohiko Omura
  • Publication number: 20040187971
    Abstract: A low alloy steel, characterized by consisting of, by mass %, C: 0.2-0.55%, Si: 0.05-0.5%, Mn: 0.1-1%, S: 0.0005-0.01%, O(Oxygen): 0.0010-0.01%, Al: 0.005-0.05%, Ca: 0.0003-0.007%, Ti: 0.005-0.05%, Cr: 0.1-1.5%, Mo: 0.1-1% and Nb: 0.005-0.1%, and the balance Fe and impurities; and also characterized by the impurities whose contents are restricted to P≦0.03% and N≦0.015%; and further characterized by containing composites of inclusions of not greater than 7 &mgr;m in major axis with appearance frequency of not less than 10 pieces of composites per 0.1 mm2 of the steel cross section, wherein the composite comprises an outer shell of carbonitride of Ti and/or Nb surrounding a nucleus of oxysulfide of Al and Ca.
    Type: Application
    Filed: November 21, 2003
    Publication date: September 30, 2004
    Inventor: Tomohiko Omura
  • Publication number: 20030178111
    Abstract: A steel material and a steel pipe made by using the same are provided which are to be used in severe oil well environments. Such a highly tough oil well steel pipe can be produced by rolling the base material, quenching the rolling product from the austenite region and tempering the same so that the relationship between the content of Mo [Mo] in the carbides precipitated at austenite grain boundaries and the austenite grain size (according to ASTM E 112) can be defined by the formula (a) given below. In this manner, steel pipes suited for use even under oil well environments becoming more and more severe can be produced while satisfying the requirements that the cost should be rationalized, the productivity improved and energy saved.
    Type: Application
    Filed: April 22, 2003
    Publication date: September 25, 2003
    Inventors: Shigeru Nakamura, Kaori Kawano, Tomohiko Omura, Toshiharu Abe
  • Patent number: 6379821
    Abstract: This invention relates to a large-diameter, thick-wall martensitic stainless steel welded pipe. For this welded pipe, the size of the raised weld bead portion on the inside surface is restricted to be small based on a conditional formula derived by considering the bead width and height and the yield strength of the base metal and of the weld metal. As a result, the base metal portion and pipe inside surface seam portion of this welded pipe are superior in corrosion resistance, in particular stress corrosion cracking resistance (SCC resistance). The sulfide stress corrosion resistance (sour gas resistance) and carbon dioxide corrosion resistance can be further improved by selecting the chemical compositions. This welded pipe is very well suited for use as a pipe for a pipeline for conveying a crude oil and a natural gas with no dehydration treatment, which is highly corrosive to metals.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: April 30, 2002
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takahiro Kushida, Tomohiko Omura, Kunio Kondo, Kazuhiro Ogawa, Masahiko Hamada
  • Publication number: 20010030004
    Abstract: This invention relates to a large-diameter, thick-wall martensitic stainless steel welded pipe. For this welded pipe, the size of the raised weld bead portion on the inside surface is restricted to be small based on a conditional formula derived by considering the bead width and height and the yield strength of the base metal and of the weld metal. As a result, the base metal portion and pipe inside surface seam portion of this welded pipe are superior in corrosion resistance, in particular stress corrosion cracking resistance (SCC resistance). The sulfide stress corrosion resistance (sour gas resistance) and carbon dioxide corrosion resistance can be further improved by selecting the chemical compositions. This welded pipe is very well suited for use as a pipe for a pipeline for conveying a crude oil and a natural gas with no dehydration treatment, which is highly corrosive to metals.
    Type: Application
    Filed: April 2, 2001
    Publication date: October 18, 2001
    Inventors: Takahiro Kushida, Tomohiko Omura, Kunio Kondo, Kazuhiro Ogawa, Masahiko Hamada
  • Patent number: 6267828
    Abstract: A low alloy steel for oil country tubular well which has a yield stress of 110 ksi or above, and excellent sulfide stress cracking resistance. The low alloy steel comprises, by weight, 0.2 to 0.35% carbon, 0.2 to 0.7% chromium, 0.1 to 0.5% molybdenum, 0.1 to 0.3% vanadium, 0 to 0.5% silicon, 0 to 1% manganese, 0 to 0.1% aluminum, 0 to 0.1% niobium, 0 to 0.05% titanium, 0 to 0.005% boron, 0 to 0.1% zirconium, 0 to 1% tungsten, 0 to 0.01% calcium, 0.025% or less phosphorus, 0.01% or less sulfur, 0.01% or less nitrogen, and 0.01% or less oxygen. The low alloy steel further comprises a total amount of precipitated carbides between about 2 to 5% by weight, and a ratio of the MC type carbide to the total amount of the precipitated carbides is between about 8 to 40% by weight.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: July 31, 2001
    Inventors: Takahiro Kushida, Kaori Miyata, Kunio Kondo, Tomohiko Omura
  • Patent number: 6220306
    Abstract: A hot rolled martensite stainless steel plate which is excellent in formability and corrosion resistance has a chemical composition comprising, by mass %, 0.05% or less carbon, 10 to 15% chromium, 0 to 3% molybdenum, 0 to 0.75% titanium, and 1 to 8% nickel, with the balance being iron and impurities, and has a yield stress of 110 ksi (758 MPa) or less and a specific amount of austenitic phase according to the plate thickness.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: April 24, 2001
    Inventors: Tomohiko Omura, Takahiro Kushida