Patents by Inventor Tomohiro Nakano

Tomohiro Nakano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10683826
    Abstract: A fuel injection control device includes a valve closing detection unit to detect a valve closing timing by using either of an electromotive force quantity detection mode and an timing detection mode and a selection unit to select either of the electromotive force quantity detection mode and the timing detection mode for detecting the valve closing timing, and the selection unit: selects the timing detection mode when a requested injection quantity is larger than a prescribed reference injection quantity in partial lift injection; and selects the electromotive force quantity detection mode when the requested injection quantity is smaller than the reference injection quantity.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 16, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki Satake, Eiji Murase, Tomohiro Nakano
  • Patent number: 10612480
    Abstract: A fuel injection control device includes a correction unit to calculate a correction coefficient for correcting a valve closing timing detected by an electromotive force quantity detection mode by using a valve closing timing detected by a timing detection mode. An estimation unit estimates an estimated injection quantity by using a valve closing timing after corrected by using a correction coefficient when the electromotive force quantity detection mode is selected by a selection unit and a valve closing timing is detected by the electromotive force quantity detection mode.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: April 7, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki Satake, Eiji Murase, Tomohiro Nakano
  • Patent number: 10590880
    Abstract: After start-up of an internal combustion engine, a CPU divides a request injection amount, which is used to control the air-fuel ratio to a target value, into an amount of fuel injected by a port injection valve and an amount of fuel injected by a direct injection valve based on rotation speed and a load ratio. When the amount of fuel injected by the port injection valve changes from zero to greater than zero, the CPU decreases the actual fuel injection amount from the divided fuel injection amount then gradually increases to the divided fuel injection amount. When the amount of fuel injected by the port injection valve is gradually increased, the amount of fuel injected by the direct injection valve is increased from the divided fuel injection amount so that the request injection amount of fuel is injected by the port injection valve and the direct injection valve.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: March 17, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiko Higuchi, Tomohiro Nakano, Eiji Murase
  • Patent number: 10578046
    Abstract: A fuel injection control device has a detection unit, a correction value calculation unit, and a conduction time calculation unit. The detection unit detects a current increase speed that is a speed of increasing an electric current flowing in an electromagnetic coil in accordance with the start of conducting the electromagnetic coil during partial lift injection in which a valve body starts valve closing operation before the valve body reaches a maximum valve opening position after the valve body starts valve opening operation. The correction value calculation unit calculates a correction value for a requested injection quantity on the basis of the detected current increase speed. The conduction time calculation unit calculates a conduction time of the electromagnetic coil during the partial lift injection on the basis of the requested injection quantity corrected by the correction value.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 3, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki Satake, Tomohiro Nakano
  • Patent number: 10550793
    Abstract: A fuel injection control device divides an amount of fuel corresponding to an injection amount required for a single combustion into portions corresponding to multiple fuel injections, causes the direct injector to inject the fuel in the multiple times, and causes the direct injector to execute a partial-lift injection as a final fuel injection. The device includes a total injection amount calculation section, an individual injection amount calculation section, and an injection amount changing section. The injection amount changing section executes, as a first changing process, a process for increasing the injection amount at the final fuel injection to a value between a partial-lift injection lower limit value and a partial-lift injection upper limit value and reducing the injection amount at a fuel injection other than the final fuel injection by the increased amount of the injection amount at the final fuel injection.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: February 4, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akihiko Higuchi, Tomohiro Nakano, Eiji Murase
  • Patent number: 10511057
    Abstract: Provided is a method for producing a non-aqueous electrolyte secondary battery with which resistance increase is inhibited during high-temperature storage while good battery properties are retained. The production method of this invention comprises a step of obtaining a positive electrode, a negative electrode and a non-aqueous electrolyte; and a step of placing the positive electrode, the negative electrode and the non-aqueous electrolyte in a battery case. Herein, the non-aqueous electrolyte comprises a fluorine atom-containing supporting salt and a benzothiophene oxide.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 17, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Yamasaki, Tomoko Nagao, Tomohiro Nakano, Tatsuya Hashimoto
  • Patent number: 10502149
    Abstract: An intermittent combustion mode is executed while cyclically switching an intermittent firing pattern in such a manner that the skipped-cylinder interval is changed by one cylinder at a time. Furthermore, the intermittent firing pattern is switched in such a manner that the fired cylinder ratio in one cycle of switching of the intermittent firing pattern becomes equal to a target fired cylinder ratio. This suppresses the occurrence of vibration and noise having low frequencies that tend to disturb the occupant while limiting an increase in the rotational fluctuation of the engine.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 10, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro Nakano
  • Patent number: 10454140
    Abstract: In an electrode body for use in non-aqueous electrolyte secondary battery, a first end of a separator is located more interiorly than one positive electrode end of a positive electrode plate in a width direction, located more exteriorly than one end of a coated positive electrode portion of the positive electrode plate, and located more exteriorly than one end of a coated negative electrode portion of a negative electrode plate. The first end of the separator is thicker than an intermediate portion. A second end of the separator is located more interiorly than an other negative electrode end of the negative electrode plate in the width direction, located more exteriorly than the other end of the coated positive electrode portion of the positive electrode plate, and located more exteriorly than an other end of the coated negative electrode portion of the negative electrode plate. The second end of the separator is thicker than the intermediate portion.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: October 22, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Nakano, Hideaki Fujita
  • Patent number: 10450996
    Abstract: During rapid warm-up operation, a CPU executes full lift injection processing, in which a nozzle needle reaches a maximum lift amount, in an intake stroke of each cylinder of a four-cylinder internal combustion engine, and then executes partial lift injection processing, in which the nozzle needle does not reach the maximum lift amount, in a compression stroke. On the other hand, during learning of injection characteristics of partial lift injection processing, the CPU executes full lift injection processing after executing partial lift injection processing, both of which are executed within a predetermined period in an intake stroke. The CPU learns the injection characteristics based on an inflection point in the temporal change of the induced electromotive force in a coil following the end of the partial lift injection processing.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 22, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro Nakano
  • Publication number: 20190249607
    Abstract: An engine controller includes a cylinder deactivation control unit and a valve stopping control unit. When performing the valve stopping control, the valve stopping control unit, in a case in which the cylinder deactivation control unit executes the cylinder deactivation with the deactivated cylinder fixed, stop the operation for opening and closing the exhaust valve of the deactivated cylinder from a first combustion cycle after starting the cylinder deactivation and stop the operation for opening and closing the intake valve of the deactivated cylinder from a second combustion cycle after starting the cylinder deactivation. The valve stopping control unit, in a case in which the cylinder deactivation control unit executes the cylinder deactivation without fixing the deactivated cylinder, stop the operation for opening and closing both the intake valve and the exhaust valve of the deactivated cylinder from the first combustion cycle after starting the cylinder deactivation.
    Type: Application
    Filed: January 16, 2019
    Publication date: August 15, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro NAKANO
  • Publication number: 20190249608
    Abstract: An engine controller configured to control an engine includes a combustion cylinder ratio control unit, a valve stopping control unit, and a throttle control unit. The throttle control unit is configured to start adjusting a throttle open degree in accordance with the change of the combustion cylinder ratio at an earlier timing when the value of the combustion cylinder ratio is increased by the change than when the value of the combustion cylinder ratio is decreased by the change.
    Type: Application
    Filed: January 16, 2019
    Publication date: August 15, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro NAKANO
  • Patent number: 10374255
    Abstract: Provided is a nonaqueous electrolyte secondary battery in which the following are housed in a battery case: a nonaqueous electrolyte, a boron atom-containing oxalato complex compound, and an electrode assembly in which a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material are disposed facing each other. Here, a coat containing boron atoms originating from the oxalato complex compound is formed on the surface of the negative electrode active material, and the amount BM (?g/cm2) of the boron atom as measured based on inductively coupled plasma-atomic emission spectroscopic analysis and the intensity BA for a tricoordinate boron atom as measured based on x-ray absorption fine structure analysis satisfy 0.5?BA/BM?1.0.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: August 6, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomohiro Nakano, Satoshi Goto, Tomohide Sumi, Hideki Sano
  • Publication number: 20190195163
    Abstract: A fuel injection control device includes a conduction time calculation unit, a detection unit, an estimation unit, a correction unit, a sudden change determination unit, and a reflection speed setting unit. The detection unit detects a physical quantity having a correlation with an actual injection quantity during the partial lift injection. The estimation unit estimates the actual injection quantity on the basis of a detection result of the detection unit. The correction unit corrects the requested injection quantity by a correction quantity corresponding to a deviation between the actual injection quantity and the requested injection quantity. The sudden change determination unit determines whether or not the correction quantity is in a sudden change state on the basis of whether or not the correction quantity has changed from a previous value by a prescribed quantity or more. The reflection speed setting unit sets the reflection speed.
    Type: Application
    Filed: April 7, 2017
    Publication date: June 27, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Tomohiro NAKANO
  • Publication number: 20190178189
    Abstract: A fuel injection control device includes a valve closing detection unit (54) to detect a valve closing timing by using either of an electromotive force quantity detection mode and a timing detection mode, a selection unit (21) to select either of the electromotive force quantity detection mode and the timing detection mode for detecting the valve closing timing, and a correction unit (21) to calculate a correction coefficient for correcting a requested injection quantity so as to reduce the difference between an estimated injection quantity and the requested injection quantity, and the selection unit selects the electromotive force quantity detection mode regardless of the value of the requested injection quantity when the calculation of the correction coefficient is not completed.
    Type: Application
    Filed: April 7, 2017
    Publication date: June 13, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Eiji MURASE, Tomohiro NAKANO
  • Publication number: 20190170075
    Abstract: A fuel injection control device includes a correction unit to calculate a correction coefficient for correcting a valve closing timing detected by an electromotive force quantity detection mode by using a valve closing timing detected by a timing detection mode. An estimation unit estimates an estimated injection quantity by using a valve closing timing after corrected by using a correction coefficient when the electromotive force quantity detection mode is selected by a selection unit and a valve closing timing is detected by the electromotive force quantity detection mode.
    Type: Application
    Filed: April 7, 2017
    Publication date: June 6, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Eiji MURASE, Tomohiro NAKANO
  • Publication number: 20190145330
    Abstract: A fuel injection control device has a conduction time calculation unit, a setting unit, a conduction control unit, a detection unit, an estimation unit, and a changing unit. The conduction time calculation unit calculates a conduction time of an electric actuator corresponding to a requested injection quantity during partial lift injection. The setting unit sets a command conduction time. The conduction control unit energizes an electric actuator on the basis of a command conduction time set by the setting unit. The detection unit detects a physical quantity having a correlation with an actual injection quantity during partial lift injection. The estimation unit estimates an actual injection quantity on the basis of a detection result of the detection unit. The changing unit changes a lower limit time on the basis of a deviation between an estimated actual injection quantity and a requested injection quantity.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 16, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Tomohiro NAKANO
  • Publication number: 20190136789
    Abstract: A fuel injection control device includes a valve closing detection unit to detect a valve closing timing by using either of an electromotive force quantity detection mode and an timing detection mode and a selection unit to select either of the electromotive force quantity detection mode and the timing detection mode for detecting the valve closing timing, and the selection unit: selects the timing detection mode when a requested injection quantity is larger than a prescribed reference injection quantity in partial lift injection; and selects the electromotive force quantity detection mode when the requested injection quantity is smaller than the reference injection quantity.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 9, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Eiji MURASE, Tomohiro NAKANO
  • Publication number: 20190120167
    Abstract: A fuel injection control device has a detection unit, a correction value calculation unit, and a conduction time calculation unit. The detection unit detects a current increase speed that is a speed of increasing an electric current flowing in an electromagnetic coil in accordance with the start of conducting the electromagnetic coil during partial lift injection in which a valve body starts valve closing operation before the valve body reaches a maximum valve opening position after the valve body starts valve opening operation. The correction value calculation unit calculates a correction value for a requested injection quantity on the basis of the detected current increase speed. The conduction time calculation unit calculates a conduction time of the electromagnetic coil during the partial lift injection on the basis of the requested injection quantity corrected by the correction value.
    Type: Application
    Filed: April 7, 2017
    Publication date: April 25, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Nobuyuki SATAKE, Tomohiro NAKANO
  • Patent number: 10267252
    Abstract: A controller for an internal combustion engine is configured to control the fuel injection valve so that the fuel injection valve selectively performs partial lift injection, which does not open a valve member at a fully open position, and full lift injection, which opens the valve member at the fully open position. The internal combustion engine includes the fuel injection valve and a fuel supply system. The controller includes an energizing time setting unit, a fuel pressure calculation unit, and a smoothening process unit. The energizing time setting unit is configured to set an energizing time for the full lift injection based on graded fuel pressure calculated by the smoothening process unit and set an energizing time for the partial lift injection based on fuel pressure calculated by the fuel pressure calculation unit.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: April 23, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Tomohiro Nakano
  • Patent number: 10240553
    Abstract: This fuel injection system includes a port injector, an in-cylinder injector, and a control device. The control device sets the number of executions of maximum partial lift injection per injection stroke based on the pressure of a fuel supplied to the in-cylinder injector and within a range of the number of injections in which an injection amount of the maximum partial lift injection per injection stroke becomes equal to or less than a target amount. This control device allows the in-cylinder injector to execute the number of executions of the maximum partial lift injection and allows the port injector to inject the fuel by the amount equal to the shortfall compared to the total injection amount only in the maximum partial lift injection by the in-cylinder injector.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: March 26, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomohiro Nakano, Eiji Murase