Patents by Inventor Tomonori Kanai

Tomonori Kanai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495696
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: December 3, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Patent number: 10495692
    Abstract: The present invention enables correct detection of the state of a relay provided on each of the positive and negative terminal sides of a secondary battery. A positive-side main relay makes or breaks continuity between first and second positive contact points, and a negative-side main relay makes or breaks continuity between first and second negative contact points. A microcomputer can measure a first voltage between the first positive and first negative contact points, a second voltage between the second positive and first negative contact points, and a third voltage between the first positive and second negative contact points. The microcomputer detects the state of the positive-side main relay based on a voltage measurement result obtained when the first and second voltages are measured synchronously, and detects the state of the negative-side main relay based on a voltage measurement result obtained when the first and third voltages are measured synchronously.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: December 3, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Patent number: 10449862
    Abstract: Cell voltage measurement is executed immediately after termination of diagnosis on a cell voltage detection function. In a battery managing device 10, a voltage detecting unit 140 detects a terminal voltage of each of battery cells 21 and 22. An RC filter 110 is electrically connected to voltage detecting lines L1, L2, and L3, and a status variation causing unit 130 causes an electrical status variation with respect to the voltage detecting lines L1, L2, and L3. A voltage fluctuating unit 120 fluctuates the terminal voltage of the battery cells 21 and 22 in response to the electrical status variation that is caused by the status variation causing unit 130. A microcomputer 150 diagnoses the voltage detecting unit 140 on the basis of a detection result of the terminal voltage of the battery cells 21 and 22 by the voltage detecting unit 140 when the terminal voltage of the battery cells 21 and 22 is fluctuated by the voltage fluctuating unit 120.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: October 22, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori Kanai, Akihiko Kudo, Tomoyuki Arima, Akiko Tsukamoto
  • Patent number: 10393823
    Abstract: An object is to achieve management control of an assembled battery using an accurate measured value of a cell voltage. A battery system monitoring apparatus 10 that monitors and controls a battery system includes battery monitoring circuits 100 provided for respective cell groups 120. Each of the battery monitoring circuits 100 includes a cell voltage measurement module 6 that is connected with two electrodes of respective single battery cells 110 of a corresponding cell group 120 via voltage detection lines 2 and that measures a cell voltage of each of the single battery cells 110 at each of predetermined timings. An RC filter 4 is connected with the voltage detection lines 2. The RC filter 4 includes resistors and capacitors. The cell voltage measurement module 6 extends intervals at which the cell voltage is to be measured when a stored charge amount in the capacitor in the RC filter 4 changes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 27, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko Kudo, Tomonori Kanai, Tomoyuki Arima, Akiko Tsukamoto
  • Patent number: 10386419
    Abstract: Measurement of a cell voltage is executed immediately after diagnosis of a battery management device is ended. In a battery management device, current sources repeatedly perform an energization operation to cause a current to flow to voltage detection lines with a magnitude of the current that enables each amount of charge stored in capacitors changed by one energization operation to fall within a range corresponding to a fluctuation width of terminal voltages of battery cells during the energization operation when resistors are in a normal state. When the difference between the current terminal voltage of the battery cell and the past terminal voltage of the battery cell is larger than the predetermined threshold value, the microcomputer diagnoses that the resistor is in the open state.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 20, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori Kanai, Akihiko Kudo, Tomoyuki Arima, Akiko Tsukamoto
  • Publication number: 20190049523
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 14, 2019
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru MIURA, Mutsumi KIKUCHI, Akihiko KUDOH, Tomonori KANAI
  • Patent number: 10132871
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 20, 2018
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Publication number: 20180246169
    Abstract: The present invention enables correct detection of the state of a relay provided on each of the positive and negative terminal sides of a secondary battery. A positive-side main relay makes or breaks continuity between first and second positive contact points, and a negative-side main relay makes or breaks continuity between first and second negative contact points. A microcomputer can measure a first voltage between the first positive and first negative contact points, a second voltage between the second positive and first negative contact points, and a third voltage between the first positive and second negative contact points. The microcomputer detects the state of the positive-side main relay based on a voltage measurement result obtained when the first and second voltages are measured synchronously, and detects the state of the negative-side main relay based on a voltage measurement result obtained when the first and third voltages are measured synchronously.
    Type: Application
    Filed: August 8, 2016
    Publication date: August 30, 2018
    Inventors: Hikaru MIURA, Mutsumi KIKUCHI, Akihiko KUDOH, Tomonori KANAI
  • Publication number: 20180241100
    Abstract: Even when a service disconnect switch is opened, an integrated circuit connected to single battery cells are operated. The cell controller is provided with: the integrated circuits; a signal transmission path through which a signal is transmitted between the integrated circuits via the capacitors; and the connection circuit. The first integrated circuit is provided corresponding to the first cell group electrically connected to one side of the SD-SW, and the second integrated circuit is provided corresponding to the second cell group electrically connected to one side of the SD-SW. The connection circuit AC-couples the ground terminal GND of the first integrated circuit to the ground terminal GND of the second integrated circuit through the capacitor.
    Type: Application
    Filed: August 8, 2016
    Publication date: August 23, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko KUDO, Tomonori KANAI, Tomoyuki ARIMA
  • Patent number: 10014699
    Abstract: Even with a large ripple voltage superposed on a voltage of a battery cell, the voltage of the battery cell can be measured accurately. In a battery monitoring device, a supply circuit, based on a reference voltage inputted from an assembled battery, generates a driving voltage for driving each of switching elements, of a selection circuit and supplies the driving voltage to the selection circuit. The reference voltage is inputted from the assembled battery to the supply circuit via a detecting filter circuit. As a result, a time constant of a route through which the reference voltage is inputted from the assembled battery to the supply circuit is approximately equal to time constants of detecting filter circuits.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: July 3, 2018
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hiroshi Iwasawa, Akihiko Kudo, Mitsuo Noda, Mutsumi Kikuchi, Tomonori Kanai
  • Publication number: 20180143260
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 24, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hikaru MIURA, Mutsumi KIKUCHI, Akihiko KUDOH, Tomonori KANAI
  • Publication number: 20180052207
    Abstract: Measurement of a cell voltage is executed immediately after diagnosis of a battery management device is ended. In a battery management device, current sources repeatedly perform an energization operation to cause a current to flow to voltage detection lines with a magnitude of the current that enables each amount of charge stored in capacitors changed by one energization operation to fall within a range corresponding to a fluctuation width of terminal voltages of battery cells during the energization operation when resistors are in a normal state. When the difference between the current terminal voltage of the battery cell and the past terminal voltage of the battery cell is larger than the predetermined threshold value, the microcomputer diagnoses that the resistor is in the open state.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 22, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori KANAI, Akihiko KUDO, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Patent number: 9897662
    Abstract: A battery system includes a battery module having a plurality of assembled batteries. Battery monitoring circuits are provided to correspond to each of the assembled batteries of the battery module. A control circuit controls operation of the battery monitoring circuits. A first signal transmission path transmits signals that are input and output between the battery monitoring circuits and the control circuit. A first isolation element is connected to the control circuit, and a second isolation element is connected to the battery monitoring circuit. The first signal transmission path is isolated from the control circuit by the first isolation element and is isolated from the battery monitoring circuit by the second isolation element. The electrical potential of the first signal transmission path is a floating potential in relation to the electrical potentials of the control circuit and battery monitoring circuits.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: February 20, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hikaru Miura, Mutsumi Kikuchi, Akihiko Kudoh, Tomonori Kanai
  • Publication number: 20180043781
    Abstract: Cell voltage measurement is executed immediately after termination of diagnosis on a cell voltage detection function. In a battery managing device 10, a voltage detecting unit 140 detects a terminal voltage of each of battery cells 21 and 22. An RC filter 110 is electrically connected to voltage detecting lines L1, L2, and L3, and a status variation causing unit 130 causes an electrical status variation with respect to the voltage detecting lines L1, L2, and L3. A voltage fluctuating unit 120 fluctuates the terminal voltage of the battery cells 21 and 22 in response to the electrical status variation that is caused by the status variation causing unit 130. A microcomputer 150 diagnoses the voltage detecting unit 140 on the basis of a detection result of the terminal voltage of the battery cells 21 and 22 by the voltage detecting unit 140 when the terminal voltage of the battery cells 21 and 22 is fluctuated by the voltage fluctuating unit 120.
    Type: Application
    Filed: March 4, 2016
    Publication date: February 15, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori KANAI, Akihiko KUDO, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Patent number: 9880224
    Abstract: A battery system monitoring device includes a plurality of battery monitoring circuits, which is respectively provided in cell groups, and a balancing resistor. Each of the battery monitoring circuits includes a cell voltage measurement unit to measure a cell voltage of each single battery cell at predetermined timing, a discharge switch to switch a state of a discharge current which flows from each single battery cell through the balancing resistor, and a balancing control unit configured to control the discharge switch. A filter circuit is connected between the cell voltage measurement unit and each single battery cell. The cell voltage measurement unit determines whether a cell voltage is measured within a transient response period corresponding to a time constant of the filter circuit and corrects a measurement value of a cell voltage by using a correction value correcting a result of the determination.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: January 30, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Tomonori Kanai
  • Publication number: 20180017631
    Abstract: An object is to achieve management control of an assembled battery using an accurate measured value of a cell voltage. A battery system monitoring apparatus 10 that monitors and controls a battery system includes battery monitoring circuits 100 provided for respective cell groups 120. Each of the battery monitoring circuits 100 includes a cell voltage measurement module 6 that is connected with two electrodes of respective single battery cells 110 of a corresponding cell group 120 via voltage detection lines 2 and that measures a cell voltage of each of the single battery cells 110 at each of predetermined timings. An RC filter 4 is connected with the voltage detection lines 2. The RC filter 4 includes resistors and capacitors. The cell voltage measurement module 6 extends intervals at which the cell voltage is to be measured when a stored charge amount in the capacitor in the RC filter 4 changes.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 18, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Akihiko KUDO, Tomonori KANAI, Tomoyuki ARIMA, Akiko TSUKAMOTO
  • Patent number: 9755453
    Abstract: A cell controller in a battery-monitoring device that monitors an assembled battery having a single cell group or a plurality of cell groups, each made up with a plurality of battery cells connected in series, includes: a startup terminal to which a first discharge resistor is connected and a startup voltage is applied; and a cell-balancing unit that executes cell balancing operation in order to adjust charge levels of the plurality of battery cells during a time period through which the startup voltage remains equal to or greater than a predetermined voltage, wherein: the startup voltage is applied for a predetermined length of time by a first timer unit that includes a passive element capable of accumulating electric energy and capable of discharging electric energy to the startup terminal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: September 5, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Tomonori Kanai, Akihiko Kudoh, Hikaru Miura, Mitsuo Noda, Mutsumi Kikuchi
  • Patent number: 9746525
    Abstract: A battery system monitoring device that monitors a battery system provided with a cell group having a plurality of battery cells connected in series with each other, including: a first control device that monitors and controls states of the plurality of battery cells of the cell group; a second control device that controls the first control device; a temperature detection unit that measures a temperature in the vicinity of the first control device; and a plurality of voltage detection lines, for measuring an inter-terminal voltage of the battery cell, which connect each of a positive electrode and a negative electrode of the battery cell and the first control device. The first control device includes a balancing switch, which performs balancing discharge of the battery cell for each of the battery cells.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: August 29, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akihiko Kudo, Mutsumi Kikuchi, Tomonori Kanai, Tatsumi Yamauchi, Akihiro Machida
  • Patent number: 9696383
    Abstract: A battery monitoring system includes a plurality of battery monitoring devices connected to a battery formed by connecting a plurality of battery cell groups in series, and monitor a state of the battery for the respective battery cell groups, each of the plurality of battery cell groups being of one or a plurality of battery cells connected in series, and a controller that performs wireless communication with the plurality of battery monitoring devices. First identification information portions which are different from each other are set in the plurality of battery monitoring devices in advance, and second identification information corresponding to an order of potentials of the battery cell groups in the battery, to which the battery monitoring devices are connected, is assigned to each of the plurality of battery monitoring devices. The controller stores a relationship between the first and second identification information for each battery monitoring device.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 4, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Mutsumi Kikuchi, Akihiko Kudo, Tomonori Kanai, Hikaru Miura, Akihiko Emori
  • Patent number: 9651625
    Abstract: A battery monitoring apparatus comprises a reception section to receive a radio signal and to output power and a demodulated signal according to the radio signal; a first power source circuit to perform power supply based on the power; a decode circuit to operate upon receiving the power supply from the first power source circuit and to output an activation signal and a command based on the demodulated signal; a second power source circuit to be activated according to the activation signal and to perform power supply; a battery monitoring circuit to operate upon receiving the power supply from the second power source circuit and to output a monitoring result of a state of the battery according to the command; and a transmission section to operate upon receiving the power supply from the second power source circuit and to wirelessly transmit the monitoring result.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 16, 2017
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Mutsumi Kikuchi, Akihiko Kudo, Tomonori Kanai, Hikaru Miura, Akihiko Emori