Patents by Inventor Tomoo Takahara

Tomoo Takahara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100135664
    Abstract: In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 3, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Hiroki Ooi, Takashi Iwabuchi, Takafumi Terahara, Junichi Kumasako, George Ishikawa, Tomoo Takahara
  • Publication number: 20100092186
    Abstract: An apparatus and method includes converting an optical signal that is received into an electrical signal and outputting the electrical signal, converting the electrical signal into a data signal and outputting the data signal by comparing the electrical signal with a reference voltage, monitoring the electrical signal and output monitored information, and controlling the reference voltage based on the monitored information.
    Type: Application
    Filed: October 8, 2009
    Publication date: April 15, 2010
    Applicant: Fujitsu Limited
    Inventor: Tomoo TAKAHARA
  • Patent number: 7689133
    Abstract: An optical signal reception device is disclosed that receives and demodulates an optical signal modulated by DQPSK and performs logical inversion and other controls to transit to the object reception state.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: March 30, 2010
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Takeshi Hoshida, Tomoo Takahara, Kentaro Nakamura, Naoki Kuwata
  • Publication number: 20100054756
    Abstract: In an optical modulator, a DQPSK modulating section, a waveguide optical amplifying section, and an RZ modulating section are cascade connected on an optical path between input and output ports, and power of RZ-DQPSK signal light output from the output port is monitored by a photodetector, to feed-back control the waveguide optical amplifying section by an output control section so that the monitored power becomes constant at a target level. As a result, a small and low-cost optical modulator that can reliably compensate respective losses in a phase modulating section and an intensity modulating section, and differences of the respective losses, can be realized.
    Type: Application
    Filed: May 29, 2009
    Publication date: March 4, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Masato Nishihara, Tomoo Takahara
  • Publication number: 20090279895
    Abstract: An input unit receives input of a clock signal having a voltage that varies continuously. A supply unit supplies a constant reference voltage. A selector outputs a clock signal having voltage that is changed alternately each time the voltage of the clock signal input from the input unit shifts across the reference voltage supplied from the supply unit. A calculating circuit outputs the exclusive-OR of the clock signal input from the input unit and a clock signal output from the selector.
    Type: Application
    Filed: January 29, 2009
    Publication date: November 12, 2009
    Applicant: FUJITSU LIMITED
    Inventor: Tomoo Takahara
  • Publication number: 20090226184
    Abstract: An optical modulation device and method thereof is provided. The optical modulation device includes a decision circuit making a decision with respect to an input data signal in accordance with a timing of a first clock signal, a first modulator modulating light output based on the data signal by the decision circuit; a second modulator modulating the modulated light in accordance with a timing of a second clock signal; and delay controller delaying the first clock signal within a range of a phase margin of a decision circuit, and delaying the second clock signal, thereby controlling a state of a phase difference between the data signal and the second clock signal.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 10, 2009
    Applicant: Fujitsu Limited
    Inventors: Masato NISHIHARA, Tomoo Takahara
  • Patent number: 7555061
    Abstract: An optical sender is disclosed that operates in a Differential Quadrature Phase Shift Keying modulation scheme for high speed optical transmission and is capable of performing logical calculations at a low speed. The optical sender transmits a Differential Quadrature Phase Shift Keying (DQPSK) signal generated with modulation signals ?k and ?k so that a signal directly output from a signal receiver corresponding to the optical sender is in agreement with data signals Ik and Qk to be transmitted. The signal receiver is capable of modulation by DQPSK, and the modulation signals ?k and ?k are precoded by using the data signals Ik and Qk and the modulation signals one symbol earlier (?k?1 and ?k?1) . The optical sender includes plural precoders that perform logical calculation simultaneously and in parallel on plural data signals one period after another period.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: June 30, 2009
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Takeshi Hoshida, Tomoo Takahara, Kentaro Nakamura, Naoki Kuwata
  • Publication number: 20090116844
    Abstract: An optical receiving apparatus branches an optical signal, photo-electric-converts the branched signals, and compensates dispersion in each of the converted electrical signals. Electrical-dispersion compensators respectively compensate the dispersion in the electrical signals using a transversal filter having plural taps. A dispersion control unit controls the dispersion compensation amount for each of the electrical signals by adjusting tap coefficients of the transversal filter. A delay control unit controls the difference in the delay time of the electrical signals by adjusting the tap coefficients adjusted by the dispersion control unit. An identifying circuit identifies data in the optical signal based on each of the electrical signals that have been subjected to dispersion compensation by each of the electrical-dispersion compensators.
    Type: Application
    Filed: August 26, 2008
    Publication date: May 7, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Toshiki Tanaka, Yuichi Akiyama, Tomoo Takahara
  • Publication number: 20090080894
    Abstract: In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 26, 2009
    Applicant: FUJITSU LIMITED
    Inventors: Hiroki Ooi, Takashi Iwabuchi, Takafumi Terahara, Junichi Kumasako, George Ishikawa, Tomoo Takahara
  • Publication number: 20090041473
    Abstract: An optical modulation device including waveform shapers that waveform-shape input data signals in synchronism with a rising or falling timing based on comparison with a reference level of an input clock signal, a multi-level phase modulator that generates a multi-level-phase-modulated optical signal based on the data signals waveform-shaped by the plurality of waveform shapers, and outputs the generated optical signal, and a level ratio controller that varies a relative level ratio of the reference level to an amplitude level of the clock signal input to the waveform shapers, based on the optical signal output from the multi-level phase modulator.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 12, 2009
    Applicant: Fujitsu Limited
    Inventors: Masato Nishihara, Tomoo Takahara, Toshiki Tanaka
  • Patent number: 7466920
    Abstract: In order to compensate for chromatic dispersion ad dispersion slope over an entire wavelength band of the optical signal, the wavelength band is split into a plurality of bands, and chromatic dispersion compensation is made to make chromatic dispersion in a central wavelength of each of the bands zero.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 16, 2008
    Assignee: Fujitsu Limited
    Inventors: Hiroki Ooi, Takashi Iwabuchi, Takafumi Terahara, Junichi Kumasako, George Ishikawa, Tomoo Takahara
  • Publication number: 20080297270
    Abstract: A drive signal generation unit generates first and second drive signals for driving first and second phase modulators of a DQPSK optical modulator. First and second regeneration circuits regenerate the first and second drive signals with respect to clock signals. The first and second phase modulators are driven by the regenerated first and second drive signals. The amplitude of the first drive signal is adjusted by a first attenuator. The clock signal for the second regeneration circuit is applied after attenuated by a second attenuator. The delay time caused by the first attenuator is the same as the delay time caused by the second attenuator.
    Type: Application
    Filed: July 2, 2008
    Publication date: December 4, 2008
    Inventors: Tomoo Takahara, Takeshi Hoshida, Hisao Nakashima
  • Patent number: 7433599
    Abstract: The automatic dispersion compensation device of the present invention comprises a unit measuring the transmission quality of incoming optical signals for one or more channels input from a transmission line and a unit separating and detecting the transmission quality degradation due to chromatic dispersion, in the measurement result of the unit from degradation due to other factors and controlling a variable chromatic dispersion compensator (VDC) in such a way as to compensate for that degradation.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: October 7, 2008
    Assignee: Fujitsu Limited
    Inventors: Tomoo Takahara, Hiroki Ooi, George Ishikawa
  • Publication number: 20080240737
    Abstract: An optical receiver converting an optical signal modulated by differential phase shift keying to electrical first and second data signals; generating a clock signal from the first data signal; demultiplexing the first data signal into two signals; latching the two signals using the clock signal; delaying the clock signal by a certain amount; latching the two signals using the delayed clock signal; demultiplexing the second data signal into two additional signals; generating an inverted clock signal by inverting the clock signal; latching the two additional signals using the inverted clock signal or the clock signal; and further latching the two additional signals using the delayed clock signal.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 2, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Tomoo TAKAHARA
  • Publication number: 20080170864
    Abstract: The disclosed device and method include varying phases of two data signals at a first predetermined frequency, performing multi-level phase modulation of a light based on the two data signals whose phases are varied at the first predetermined frequency, extracting a component having the first predetermined frequency from an optical signal subjected to the phase modulation, and controlling the phases of the two data signals based on the component extracted from the optical signal.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 17, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Masato NISHIHARA, Tomoo Takahara, Yuichi Akiyama, Masahiro Yuki
  • Patent number: 7389049
    Abstract: The dispersion monitoring device of the present invention detects a change in dispersion caused in a system by performing the decision process of a received signal using a data flip-flop in which required decision phase and decision threshold are set, averaging the output signal of the data flip-flop using an integration circuit and determining a received waveform, based on a change in a level of an output signal from the integration circuit. In another preferred embodiment, a signal is inputted to a chromatic dispersion change sign monitor. If a chirping parameter is correctly set, residual chromatic dispersion shifts in the negative direction when the peak value of a received signal is large, and it shifts in the positive direction when the peak value of a received signal is small. Using this fact, optimum dispersion compensation is conducted.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: June 17, 2008
    Assignee: Fujitsu Limited
    Inventors: Tomoo Takahara, Hiroki Ooi, George Ishikawa
  • Publication number: 20080069565
    Abstract: The present invention is a differential M phase shift keying optical receiving circuit to improve an identification property of a signal from an optical front-end unit having a plurality of lines. For this, the differential M phase shift keying optical receiving circuit includes: a light-electricity converter for outputting a plurality of electronic signals in which phase-modulated element is intensity modulated from a received optical signal; a data reproduction unit for reproducing a plurality of data signals synchronized with a common clock signal from the plurality of electronic signals output from the light-electricity converter; a clock signal generation unit for generating the common clock signal to be used for reproducing the plurality of data signals in the data reproduction unit with the use of one of the plurality of electronic signals output from the light-electricity converter; and a selection unit for selecting an electronic signal to be used for generating the common clock signal.
    Type: Application
    Filed: April 24, 2007
    Publication date: March 20, 2008
    Inventor: Tomoo Takahara
  • Publication number: 20080056727
    Abstract: An optical transmitter for performing optical phase modulation according to a data signal and further applying optical intensity modulation in synchronization with clock signals and transmitting the optical signals, wherein in order to maintain the phase difference between the data signal and the clock signal constant with a simple configuration, the optical transmitter is configured so that clock signals are not individually supplied from the outside, but a clock component thereof is extracted from the data signal itself and a clock signal recovered based on the extracted clock component is defined as the clock signal. For this purpose, the configuration is made so that a clock recovery function unit is newly introduced.
    Type: Application
    Filed: April 19, 2007
    Publication date: March 6, 2008
    Applicant: Fujitsu Limited
    Inventors: Masato Nishihara, Tomoo Takahara
  • Publication number: 20070127929
    Abstract: A signal regeneration device which makes an extracted clock signal highly accurate while maintaining superior receiving sensitivity. To this end, a device of the present invention is configured to have a branch section for branching an input electrical signal which has been demodulated from a differential phase-shift modulated state; a first filter for equalizing a waveform of one of the demodulated electrical signals branched by the branch section; a clock recovery section for recovering a clock signal from the demodulated electrical signal whose waveform has been equalized by the first filter; and a data regeneration section for regenerating a data signal from a remaining one of the demodulated electrical signals branched by the branch section and from a clock signal recovered by the clock recovery section.
    Type: Application
    Filed: March 24, 2006
    Publication date: June 7, 2007
    Inventors: Masato Nishihara, Tomoo Takahara, George Ishikawa
  • Patent number: 7218856
    Abstract: A transmitted optical signal is first subjected to polarization mode dispersion compensation by a polarization mode dispersion compensator (PMDC), and then, its chromatic dispersion is compensated by a variable chromatic dispersion compensator (VDC) after the polarization mode dispersion compensation. How much the optical transmission signal suffers from polarization mode dispersion, which is needed to perform the polarization mode dispersion is measured using a Stokes parameter that is not affected by chromatic dispersion.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: May 15, 2007
    Assignee: Fujitsu Limited
    Inventors: Tomoo Takahara, Jens C. Rasmussen, Hiroki Ooi, George Ishikawa