Patents by Inventor Tong Zhao

Tong Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150037613
    Abstract: A magnetic device including a magnetic writer; and an overcoat positioned over at least the magnetic writer, the overcoat including tantalum oxide (TayOx), where y ranges from about 1 to 2 and x ranges from about 2 to 5, or mixtures thereof.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Nils Gokemeijer, Tong Zhao, James Kiely
  • Patent number: 8945731
    Abstract: A device that includes a near field transducer (NFT); at least one cladding layer adjacent the NFT; and a discontinuous metal layer positioned between the NFT and the at least one cladding layer.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 3, 2015
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael Christopher Kautzky, Michael Allen Seigler, Yongjun Zhao, Jay Jayashankar, Xiaoyue Huang
  • Patent number: 8934198
    Abstract: An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer comprising silver (Ag) and at least one other element or compound; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes: rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof; titanium (Ti) or an alloy thereof; tantalum (Ta) or an alloy thereof; tungsten (W) or an alloy thereof; borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: January 13, 2015
    Assignee: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Vankateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Publication number: 20140376349
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
  • Publication number: 20140376344
    Abstract: Apparatuses, systems, and methods are disclosed related to heat assisted magnetic recording. According to one embodiment, an apparatus that includes a heat sink region and a near field transducer region is disclosed. The near field transducer region is thermally coupled to the heat sink region. At least one of the heat sink region and the near field transducer region includes both an inner core and an outer shell. The inner core can be comprised of a non-plasmonic material and the outer shell can be comprised of a plasmonic material. In further embodiments, the inner core is comprised of a material having a relatively higher electron-phonon coupling constant and the outer shell is comprised of a material having a relatively lower electron-phonon coupling constant.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 25, 2014
    Applicant: Seagate Technology LLC
    Inventors: Tong Zhao, John C. Duda, Michael Christopher Kautzky
  • Publication number: 20140376348
    Abstract: Devices that include a near field transducer (NFT), the NFT including a peg having five exposed surfaces, the peg including a first material; an overlying structure; at least one intermixing layer, positioned between the peg and the overlying structure, the at least one intermixing layer positioned on at least one of the five surfaces of the peg, the intermixing layer including at least the first material and a second material.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Michael Allen Siegler
  • Publication number: 20140376347
    Abstract: Disclosed herein are near field transducers (NFTs) that include either silver, copper, or aluminum and one or more secondary elements.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Justin Glen Brons, Tong Zhao, Sethuraman Jayashankar, Steve C. Riemer, Michael C. Kautzky
  • Publication number: 20140376346
    Abstract: A method including depositing a plasmonic material at a temperature of at least 150° C.; and forming at least a peg of a near field transducer (NFT) from the deposited plasmonic material.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Sarbeswar Sahoo, Tong Zhao, Michael C. Kautzky
  • Publication number: 20140376352
    Abstract: A device including a near field transducer, the near field transducer including gold (Au), silver (Ag), copper (Cu), or aluminum (Al), and at least two other secondary atoms, the at least two other secondary atoms selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), manganese (Mn), tellurium (Te), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), germanium (Ge), hydrogen (H), iodine (I), rubidium (Rb), selenium (Se), terbium (Tb), nitrogen (N), oxygen (O), carbon (C), antimony (Sb), gadolinium (Gd), samarium (Sm), thallium (Tl), cadmium (Cd), neodymium (Nd), phosphorus (P), lead (Pb), hafnium (Hf), niobium (Nb), erbium (Er), zinc (Zn), magnesium (Mg), palladium (Pd), vanadium (V), zinc (Zn), chromium (Cr), iron (Fe), lithium (Li), nickel (Ni), platinum (Pt), sodium (Na), strontium (Sr), calcium (Ca), yttrium (Y), thorium (Th), beryllium (Be), thulium (Tm), erbium
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Justin Glen Brons, Steve C. Riemer, Jie Gong, Michael Allen Seigler
  • Publication number: 20140376351
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Patent number: 8902719
    Abstract: Disclosed herein is an apparatus that includes a near field transducer positioned adjacent to an air bearing surface of the apparatus; a first magnetic pole; and a heat sink positioned between the first magnetic pole and the near field transducer, wherein the heat sink includes a first and second portion, with the first portion being adjacent the near field transducer and the second portion being adjacent the first magnetic pole, the first portion including a plasmonic material, and the second portion including a diffusion blocking material.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 2, 2014
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Ibro Tabakovic, Michael C. Kautzky, Venkatram Venkatasamy, Jie Gong
  • Publication number: 20140287267
    Abstract: A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative ? to offset the positive ? from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ?2 or (CoB/CoFe)m/CoB where m is ?1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for ? (<5×10?6), RA (1.5 ohm/?m2), and Hc (<6 Oe).
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 8842391
    Abstract: An apparatus including a near field transducer positioned adjacent to an air bearing surface, the near field transducer including an electrically conductive nitride; a first magnetic pole; and a heat sink, a diffusion barrier layer, or both positioned between the first magnetic pole and the near field transducer, wherein the heat sink, the diffusion barrier or both include rhodium (Rh) or an alloy thereof; ruthenium (Ru) or an alloy thereof titanium (Ti) or an alloy thereof tantalum (Ta) or an alloy thereof tungsten (W) or an alloy thereof borides; nitrides; transition metal oxides; or palladium (Pd) or an alloy thereof.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: September 23, 2014
    Assignee: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Publication number: 20140246767
    Abstract: A semiconductor device includes a lead frame having a down bond area, a die attach area and a dam formed between the down bond area and the die attach area. A bottom of the dam is attached on a surface of the lead frame. The dam prevents contamination of the down bond area from die attach material, which may occur during a die attach process.
    Type: Application
    Filed: November 11, 2013
    Publication date: September 4, 2014
    Inventors: Peng Liu, Qingchun He, Zhaobin Qi, Liqiang Xu, Tong Zhao
  • Patent number: 8804468
    Abstract: A near-field transducer includes a substrate that defines a substrate-parallel plane. The near-field transducer also includes a composite layer deposited on the substrate-parallel plane. The composite layer has a first layer of the plasmonic material and a second layer of an insertion material adjacent the substrate. The insertion material reduces plastic deformation of the near-field transducer at elevated temperatures.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael Christopher Kautzky, Amit Itagi, Michael Allen Seigler
  • Patent number: 8747629
    Abstract: A TMR sensor with a free layer having a FL1/FL2/FL3 configuration is disclosed in which FL1 is FeCo or a FeCo alloy with a thickness between 2 and 15 Angstroms. The FL2 layer is made of CoFeB or a CoFeB alloy having a thickness from 2 to 10 Angstroms. The FL3 layer is from 10 to 100 Angstroms thick and has a negative ? to offset the positive ? from FL1 and FL2 layers and is comprised of CoB or a CoBQ alloy where Q is one of Ni, Mn, Tb, W, Hf, Zr, Nb, and Si. Alternatively, the FL3 layer may be a composite such as CoB/CoFe, (CoB/CoFe)n where n is ?2 or (CoB/CoFe)m/CoB where m is ?1. The free layer described herein affords a high TMR ratio above 60% while achieving low values for ? (<5×10?6), RA (1.5 ohm/?m2), and Hc (<6 Oe).
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: June 10, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Publication number: 20140138783
    Abstract: A magneto-resistive device having a large output signal as well as a high signal-to-noise ratio is described along with a process for forming it. This improved performance was accomplished by expanding the free layer into a multilayer laminate comprising at least three ferromagnetic layers separated from one another by antiparallel coupling layers. The ferromagnetic layer closest to the transition layer must include CoFeB while the furthermost layer is required to have low Hc as well as a low and negative lambda value. One possibility for the central ferromagnetic layer is NiFe but this is not mandatory.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chaun Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Patent number: 8728333
    Abstract: A three step ion beam etch (IBE) sequence involving low energy (<300 eV) is disclosed for trimming a sensor critical dimension (free layer width=FLW) to less than 50 nm. A first IBE step has a steep incident angle with respect to the sensor sidewall and accounts for 60% to 90% of the FLW reduction. The second IBE step has a shallow incident angle and a sweeping motion to remove residue from the first IBE step and further trim the sidewall. The third IBE step has a steep incident angle to remove damaged sidewall portions from the second step and accounts for 10% to 40% of the FLW reduction. As a result, FLW approaching 30 nm is realized while maintaining high MR ratio of over 60% and low RA of 1.2 ohm-?m2. Sidewall angle is manipulated by changing one or more ion beam incident angles.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Zheng, Minghui Yu, Min Li, Cherng Chyi Han
  • Patent number: 8722123
    Abstract: Antimicrobial compositions are provided comprising a pharmaceutically acceptable organic acid and a pharmaceutically acceptable surfactant. This synergistic combination allows compositions to be formulated at low concentrations that have efficacy in reducing bacterial counts by greater than 3 log within 5 minutes of contact while preserving the organoleptic properties of treated foods, including fresh produce. Also provided are methods for the use of the compositions to reduce the microbial load on the surfaces of foodstuffs, processed food products, and the hard surfaces of food preparation machinery, tools, benches, and the like.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 13, 2014
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Michael P. Doyle, Tong Zhao
  • Patent number: 8681595
    Abstract: Waveguides that include a top cladding layer made of a material having an index of refraction n4; a core bilayer structure, the core bilayer structure including a lower index core layer having an index of refraction n3; and a higher index core layer having an index of refraction n1, wherein the higher index core layer includes TiO2 and one or more than one of Nb2O5, CeO2, Ta2O5, ZrO2, HfO2, Y2O3, Sc2O3, MgO, Al2O3 and SiO2, wherein the lower index core layer is adjacent the higher index core layer; a bottom cladding layer made of a material having an index of refraction n2, wherein the waveguide is configured with the higher index core layer of the core bilayer structure adjacent the top cladding layer and the lower index core layer of the core bilayer structure adjacent the bottom cladding layer, and wherein n4 is less than n3 and n1, and n2 is less than n3 and n1.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Xiaoyue Huang, Michael C. Kautzky, Tong Zhao