Patents by Inventor Tong Zhao

Tong Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120117874
    Abstract: A system for gasification of a solid powder is provided. The system comprises one or more conveying tanks configured to receive a solid powder and one or more solid pumps disposed downstream of and in fluid communication with the one or more respective conveying tanks. The system further comprises a gasifier disposed downstream of and in fluid communication with the one or more solid pumps. A conveyance unit and a method for conveyance and gasification of a solid powder are also presented.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 17, 2012
    Inventors: Mingmin Wang, Lishun Hu, Gang Liu, Ke Liu, Zhe Cui, Wei Chen, Jing Lv, Tong Zhao
  • Patent number: 8164862
    Abstract: A composite seed layer that reduces the shield to shield distance in a read head while improving Hex (exchange coupling field) and Hex/Hc (Hc=coercivity) is disclosed and has a SM/A/SM/B configuration in which the SM layers are soft magnetic layers, the A (amorphous) layer is made of at least one of Co, Fe, Ni, and includes one or more amorphous elements, and the B layer is a buffer layer that contacts the AFM (anti-ferromagnetic) layer in the spin valve. The SM/A/SM stack together with the S1 (bottom) shield forms an effective shield such that the buffer layer serves as the effective seed layer while maintaining a blocking temperature of 260° C. in the AFM layer. The lower SM layer may be omitted. Examples of the amorphous layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr while the buffer layer may be Cu, Ru, Cr, Al, or NiFeCr.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: April 24, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Tong Zhao, Hui-Chuan Wang, Min Li
  • Publication number: 20120071553
    Abstract: A combination of the surfactant SDS with levulinic acid produces a synergistic effect in relation to the antimicrobial effectiveness of the individual compounds, allowing the formulation of compositions wherein the active agents are present at concentrations effective to reduce bacterial and fungal counts in liquids, including, but not limited to, water and other beverages, without altering the organoleptic properties of the treated food substance. The active agents are FDA-approved as food additives, and the treated beverages can be any aqueous-based beverage consumable by humans or animals. The levulinic acid-SDS combination is also suitable for reducing or eliminating the microbial population on the surfaces of water and beverage containers, and the machinery and facilities for the bottling of liquids.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: University of Georgia Research Foundation, Inc.
    Inventors: Michael P. Doyle, Tong Zhao
  • Patent number: 8137705
    Abstract: The present invention relates to a new composition and methods for preventing the transmission of enterohemorrhagic E. coli and other foodborne pathogens to farm animals. In accordance with one embodiment, a composition comprising lactic acid and acidic calcium sulfate, and a compound selected from the group consisting of caprylic acid, sodium benzoate, butyric acid and chlorine dioxide is provided as an inhibitor of the growth of enterohemorrhagic E. coli and other foodborne pathogens.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: March 20, 2012
    Assignee: University of Georgia Research Foundation, Inc.
    Inventors: Michael P. Doyle, Tong Zhao
  • Publication number: 20120045662
    Abstract: An apparatus includes a near field transducer positioned adjacent to an air bearing surface, a first magnetic pole, a heat sink positioned between the first magnetic pole and the near field transducer, and a diffusion barrier positioned between the near field transducer and the first magnetic pole. The diffusion barrier can be positioned adjacent to the magnetic pole or the near field transducer.
    Type: Application
    Filed: February 23, 2011
    Publication date: February 23, 2012
    Applicant: Seagate Technology LLC
    Inventors: Jie Zou, Kaizhong Gao, William Albert Challener, Mark Henry Ostrowski, Venkateswara Rao Inturi, Tong Zhao, Michael Christopher Kautzky
  • Publication number: 20120038012
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1+10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Application
    Filed: October 19, 2011
    Publication date: February 16, 2012
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 8105703
    Abstract: The conventional free layer in a CPP GMR or TMR read head has been replaced by a tri-layer laminate comprising Co rich CoFe, moderately Fe rich NiFe, and heavily Fe rich NiFe. The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is described.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: January 31, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Min Li, Tong Zhao, Kunliang Zhang, Chyu-Jiuh Torng
  • Publication number: 20110318608
    Abstract: The invention discloses how the insertion of a layer of CoFeB serves to increase the robustness of an MTF device by smoothing the interface between the tunnel barrier and the pinned layer.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Hui-Chuan Wang, Kunliang Zhang, Tong Zhao, Min Li
  • Publication number: 20110301761
    Abstract: A control system for controlling a dry feed system to convey a solid fuel includes multiple sensors, a pressurizing gas controller, at least one assistant gas controller and multiple gas valves. The sensors generate multiple measurement signals signifying characteristics of the dry feed system. The pressuring gas controller calculates a feed tank pressure bias or/and a pressuring gas flow bias based on a solid flow rate and generates a first control signal based on the pressure bias or/and the pressurizing gas flow bias. The assistant gas controller calculates an assistant gas bias based on a solid loading ratio and generates a second control signal based on the assistant gas bias. The gas valves are driven by the first or/and second control signals to regulate the solid fuel. A control method is also described.
    Type: Application
    Filed: May 20, 2011
    Publication date: December 8, 2011
    Inventors: Xu FU, Zhongzhi Hu, Tong Zhao, Zili Cai, Yao Chen, Baoming Huang, Wei Chen, Ke Liu
  • Patent number: 8059374
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1×10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: November 15, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Publication number: 20110268992
    Abstract: An insertion layer is provided between an AFM layer and an AP2 pinned layer in a GMR or TMR element to improve exchange coupling properties by increasing Hex and the Hex/Hc ratio without degrading the MR ratio. The insertion layer may be a 1 to 15 Angstrom thick amorphous magnetic layer comprised of at least one element of Co, Fe, or Ni, and at least one element having an amorphous character selected from B, Zr, Hf, Nb, Ta, Si, or P, or a 1 to 5 Angstrom thick non-magnetic layer comprised of Cu, Ru, Mn, Hf, or Cr. Preferably, the content of the one or more amorphous elements in the amorphous magnetic layer is less than 40 atomic %. Optionally, the insertion layer may be formed within the AP2 pinned layer. Examples of an insertion layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr.
    Type: Application
    Filed: June 30, 2011
    Publication date: November 3, 2011
    Inventors: Kunliang Zhang, Hui-Chuan Wang, Tong Zhao, Min Li
  • Patent number: 8035931
    Abstract: The conventional free layer in a TMR read head has been replaced by a composite of two or more magnetic layers, one of which is iron rich The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is also described.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 11, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Chyu-Jiuh Torng
  • Patent number: 8031445
    Abstract: A magnetic sensor, formed from a pair of magnetically free layers located on opposing sides of a non-magnetic layer, and method for its manufacture, are described. Biasing these free layers to be roughly orthogonal to one another causes them to be magnetostatically coupled in a weak antiferromagnetic mode. This enables the low frequency noise spectra of the two free layers to cancel one another. Careful control of the SH/TW ratio is an important feature of the device.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 4, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Kunliang Zhang, Yu-Hsai Chen, Tong Zhao, Moris Dovek
  • Publication number: 20110215800
    Abstract: A CPP MR sensor interposes a tapered soft magnetic flux guide (FG) layer between a hard magnetic biasing layer (HB) and the free layer of the sensor stack. The flux guide channels the flux of the hard magnetic biasing layer to effectively bias the free layer, while eliminating instability problems associated with magnetostatic coupling between the hard bias layers and the upper and lower shields surrounding the sensor when the reader-shield-spacing (RSS) is small.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Inventors: Yuchen Zhou, Tong Zhao, Kunliang Zhang
  • Patent number: 8008740
    Abstract: A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of <2 ohm-um2 is achieved when a CoFe AP2 layer, MgO (NOX) tunnel barrier, and CoFe/NiFe free layer are used in the TMR stack. Improved RA uniformity and less head noise are observed. Optionally, a CoFe layer may be inserted between the coupling layer and CoFeB or CoFeB alloy layer to improve pinning strength and enhance crystallization.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 30, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Kunliang Zhang, Yu-Hsia Chen, Min Li
  • Publication number: 20110205863
    Abstract: A near field transducer includes gold and at least one dopant. The dopant can include at least one of: Cu, Rh, Ru, Ag, Ta, Cr, Al, Zr, V, Pd, Ir, Co, W, Ti, Mg, Fe, or Mo. The dopant concentration may be in a range from 0.5% and 30%. The dopant can be a nanoparticle oxide of V, Zr, Mg, Ca, Al, Ti, Si, Ce, Y, Ta, W, or Th, or a nitride of Ta, Al, Ti, Si, In, Fe, Zr, Cu, W or B.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: Seagate Technology LLC
    Inventors: Tong Zhao, Michael Christopher Kautzky, William Albert Challener, Michael Allen Seigler
  • Publication number: 20110198314
    Abstract: A three step ion beam etch (IBE) sequence involving low energy (<300 eV) is disclosed for trimming a sensor critical dimension (free layer width=FLW) to less than 50 nm. A first IBE step has a steep incident angle with respect to the sensor sidewall and accounts for 60% to 90% of the FLW reduction. The second IBE step has a shallow incident angle and a sweeping motion to remove residue from the first IBE step and further trim the sidewall. The third IBE step has a steep incident angle to remove damaged sidewall portions from the second step and accounts for 10% to 40% of the FLW reduction. As a result, FLW approaching 30 nm is realized while maintaining high MR ratio of over 60% and low RA of 1.2 ohm-?m2. Sidewall angle is manipulated by changing one or more ion beam incident angles.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Zheng, Minghui Yu, Min Li, Cherng Chyi Han
  • Patent number: 8000215
    Abstract: The presently disclosed technology teaches an improved voltage pattern for conductive tips utilized as moveable top electrodes for writing data bits into ferroelectric media. A conductive tip is dragged in contact or near contact with a ferroelectric surface forming a moveable top electrode on a ferroelectric media disk. A metallic film is deposited onto a bottom-side of the ferroelectric media forming a conductive bottom electrode. Applying electrical voltage pulses between the conductive tip and the bottom electrode induces polarization switching of the ferroelectric media under the head. The improved voltage pattern incorporates positive and negative overshoot voltages to induce a polarization switch in the ferroelectric media and positive and negative drag voltages to expand a polarized region on the ferroelectric media. Potential benefits of the improved voltage pattern include reduced cross-track blooming and reduced along-track blooming resulting in a more uniform track width and bit series length.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: August 16, 2011
    Assignee: Seagate Technology LLC
    Inventors: Andreas Karl Roelofs, Tong Zhao, Martin Gerard Forrester
  • Publication number: 20110188157
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration where a top surface of FL1 is treated with a weak plasma etch is disclosed for achieving enhanced dR/R while maintaining low RA, and low ? in TMR or GMR sensors. The weak plasma etch removes less than about 0.2 Angstroms of FL1 and is believed to modify surface structure and possibly increase surface energy. FL1 may be CoFe, CoFe/CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb having a (+) ? value. FL2 may be CoFe, NiFe, or alloys thereof having a (?) ? value. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. When CoFeBTa is selected as insertion layer, the CoFeB:Ta ratio is from 1:1 to 4:1.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Inventors: Tong Zhao, Hui Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 7986498
    Abstract: A high performance TMR element is fabricated by inserting an oxygen surfactant layer (OSL) between a pinned layer and AlOx tunnel barrier layer in a bottom spin valve configuration. The pinned layer preferably has a SyAP configuration with an outer pinned layer, a Ru coupling layer, and an inner pinned layer comprised of CoFeXBY/CoFeZ wherein x=0 to 70 atomic %, y=0 to 30 atomic %, and z=0 to 100 atomic %. The OSL is formed by treating the CoFeZ layer with oxygen plasma. The AlOx tunnel barrier has improved uniformity of about 2% across a 6 inch wafer and can be formed from an Al layer as thin as 5 Angstroms. As a result, the Hin value can be decreased by ? to about 32 Oe. A dR/R of 25% and a RA of 3 ohm-cm2 have been achieved for TMR read head applications.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: July 26, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang