Patents by Inventor Tongqing Wang
Tongqing Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220252907Abstract: An integrated photonics chip comprising: a plurality of optical channels extending a length of the integrated photonics chip; at least one variable optical attenuator (VOA) being optically connected to one of the plurality of optical channels, the at least one VOA comprising a silicon diode; at least one modulator being optically connected to another of the plurality of optical channels, the at least one modulator comprising a silicon diode; wherein the silicon diodes of the at least one VOA and the at least one modulator are adapted to receive biasing voltages; and wherein an application of the biasing voltages causes the silicon diodes of the at least one VOA and the at least one modulator to be reverse-biased, such that the at least one VOA and the at least one modulator are each adapted to detect a photocurrent of an optical signal being propagated along the plurality of optical channels.Type: ApplicationFiled: February 10, 2021Publication date: August 11, 2022Inventors: Dawei Zheng, Xingyu Zhang, Tongqing Wang
-
Publication number: 20220252783Abstract: An integrated waveguide polarizer comprising: a plurality of silicon layers and a plurality of silicon-nitride layers; each of the plurality of silicon layers and each of the plurality of silicon-nitride layers having a first end and an opposite second end, the first end having a wide width and the second end having a narrow width, such that each silicon layer and each silicon-nitride layer have tapered shapes; wherein the pluralities of silicon and silicon-nitride layers are overlapped, such that at least a portion of each silicon-nitride layer overlaps at least a portion of each silicon layer; and a plurality of oxide layers disposed between the pluralities of silicon-nitride and silicon layers, each oxide layer creating a separation spacing between each silicon-nitride and each silicon layers; wherein, when an optical signal is launched through the integrated waveguide polarizer, the optical signal is transitioned between each silicon-nitride layer and each silicon layer.Type: ApplicationFiled: February 10, 2021Publication date: August 11, 2022Inventors: Xingyu Zhang, Tongqing Wang, Dawei Zheng, Zhoufeng Ying
-
Publication number: 20220206356Abstract: An integrated Mach-Zehnder Interferometer comprising: an upper arm and a lower arm; and a differential thermo-optic phase shifter comprising a first heating element and a second heating element collocated with the upper arm and the lower arm, respectively, the first heating element having a first resistance and the second heating element having a second resistance, an upper pad electrically connected to the first heating element, the upper pad being adapted to receive a first voltage, a lower pad electrically connected to the second heating element, the lower pad being adapted to receive a second voltage, and a common pad electrically connected to the first heating element and the second heating element, the common pad being adapted to receive a third voltage; wherein, when the first, the second, and the third voltages are applied to the upper, the lower, and the common pads, respectively, a phase shift difference is thermally produced.Type: ApplicationFiled: December 31, 2020Publication date: June 30, 2022Inventors: Tongqing Wang, Xingyu Zhang, Dawei Zheng
-
Patent number: 11336370Abstract: An integrated transmitter chip comprising: at least one input port disposed at a first end; a first variable power divider optically connected to a first input port of the at least one input port, the first variable power divider being tunable to a first splitting ratio; a second and a third variable power dividers each optically connected to the first variable power divider, the second and the third variable power dividers being tunable to a second and a third splitting ratios; and a first and a second optical channels being optically branched from the second variable power divider, and a third and a fourth optical channels being optically branched from the third variable power divider; wherein an optical signal being launched into the first input port and having an input power is caused to be split by the first variable power divider into a first and a second optical signals.Type: GrantFiled: March 3, 2021Date of Patent: May 17, 2022Inventors: Xingyu Zhang, Tongqing Wang, Dawei Zheng
-
Publication number: 20220146766Abstract: A method and system for locking the resonance frequency of ring resonators by using laser sources to emit a plurality of different wavelengths, applying a tagging signal to each of the wavelengths, multiplexing the tagged wavelengths using a wavelength division multiplexor, coupling the multiplexed tagged wavelengths onto a bus waveguide, detecting the multiplexed tagged wavelengths with a first photodetector disposed before a first ring resonator and a second photodetector disposed after a last ring resonator of a plurality of ring resonators, sending the signals detected by the first and second photodetector to a processor, which identifies and processes the tagging signals, generating a control signal for each ring resonator, by the processor and applying the control signals to phase shifters on each ring resonator of the plurality of ring resonators to tune and align the resonance wavelengths of the ring resonators with the wavelengths of the corresponding laser sources.Type: ApplicationFiled: November 9, 2021Publication date: May 12, 2022Inventors: Tongqing Wang, Xingyu Zhang, Dawei Zheng, Zhoufeng Ying
-
Publication number: 20220146753Abstract: A system for optically aligning a photonics die to a fiber array, the fiber array comprising a first and a second fiber channels, the system comprising: the photonics die having: a first and a second optical channels; a first and a second wavelength division multiplexing (WDM) couplers each comprising a bar port, a cross port, and a common port, the first and the second WDM couplers being optically connected to the first and the second optical channels, respectively, via the bar ports and the common ports; and a waveguide crossing optically connecting the cross ports of the first and the second WDM couplers; the system being adapted to couple an optical signal received from the first fiber channel into the cross port of the first WDM coupler and into the waveguide crossing, the optical signal being propagated from the waveguide crossing into the cross port of the second WDM coupler.Type: ApplicationFiled: November 12, 2020Publication date: May 12, 2022Inventors: Xingyu Zhang, Tongqing Wang, Dawei Zheng
-
Patent number: 10857646Abstract: An apparatus for chemical-mechanical polishing is provided, including: a plurality of polishing sections spaced apart from one another, each polishing section including: a bracket, a carrier head and a platen, the carrier head being disposed on the bracket and configured to move between a polishing position and a conveying position, in which when the carrier head is located at the polishing position, the carrier head is located above the platen; and a conveying assembly, the conveying assembly including: a rotating plate and a plurality of loading and unloading tables, the plurality of loading and unloading tables being spaced apart from one another, disposed on the rotating plate and configured to rotate along with the rotating plate, in which when the carrier head is located at the conveying position, the carrier head is corresponding to one of the plurality of loading and unloading tables.Type: GrantFiled: January 3, 2017Date of Patent: December 8, 2020Assignees: TSINGHUA UNIVERSITY, HWATSING TECHNOLOGY CO., LTD.Inventors: Zhenjie Xu, Jian Wang, Xiangyu Chen, Tongqing Wang, Kun Li, Xinchun Lu
-
Patent number: 10681811Abstract: Embodiments of present invention provide various device assemblies for digital communication. The device assemblies may include a main printed-circuit-board (PCB); and an OSA-on-daughter-board (OODB) directly connected to the main PCB. The OODB has an optical sub-assembly (OSA) wire-bonded onto a daughter PCB. In one embodiment, the daughter PCB includes a flexible printed-circuit (FPC) sheet connecting the OODB directly to the main PCB. In another embodiment, the main PCB includes a FPC sheet connecting the main PCB directly to the OODB. In one embodiment, the connection may be made through an anisotropic conductive film or an anisotropic conductive adhesive.Type: GrantFiled: February 10, 2019Date of Patent: June 9, 2020Inventors: Tongqing Wang, Ming Ding
-
Patent number: 10395518Abstract: Embodiments of present invention provide a wireless traffic sensor system. The system includes a first and a second wireless traffic sensors being installed in ground along a vehicle passing path; and a battery charging unit in vicinity of the first and second wireless traffic sensors, wherein the battery charging unit converts solar power into a plurality of electrical pulses, the electrical pulses being transmitted to at least the first and second wireless traffic sensors; and wherein the first and second wireless traffic sensors convert the plurality of electrical pulses into DC power, the DC power being used in charging a rechargeable battery inside the first and second wireless traffic sensors respectively.Type: GrantFiled: November 4, 2014Date of Patent: August 27, 2019Inventor: Tongqing Wang
-
Publication number: 20190254165Abstract: Embodiments of present invention provide various device assemblies for digital communication. The device assemblies may include a main printed-circuit-board (PCB); and an OSA-on-daughter-board (OODB) directly connected to the main PCB. The OODB has an optical sub-assembly (OSA) wire-bonded onto a daughter PCB. In one embodiment, the daughter PCB includes a flexible printed-circuit (FPC) sheet connecting the OODB directly to the main PCB. In another embodiment, the main PCB includes a FPC sheet connecting the main PCB directly to the OODB. In one embodiment, the connection may be made through an anisotropic conductive film or an anisotropic conductive adhesive.Type: ApplicationFiled: February 10, 2019Publication date: August 15, 2019Inventors: Tongqing Wang, Ming Ding
-
Publication number: 20180345446Abstract: An apparatus for chemical-mechanical polishing is provided, including: a plurality of polishing sections spaced apart from one another, each polishing section including: a bracket, a carrier head and a platen, the carrier head being disposed on the bracket and configured to move between a polishing position and a conveying position, in which when the carrier head is located at the polishing position, the carrier head is located above the platen; and a conveying assembly, the conveying assembly including: a rotating plate and a plurality of loading and unloading tables, the plurality of loading and unloading tables being spaced apart from one another, disposed on the rotating plate and configured to rotate along with the rotating plate, in which when the carrier head is located at the conveying position, the carrier head is corresponding to one of the plurality of loading and unloading tables.Type: ApplicationFiled: January 3, 2017Publication date: December 6, 2018Applicants: Tsinghua University, HWATSING TECHNOLOGY CO., LTD.Inventors: Zhenjie XU, Jian WANG, Xiangyu CHEN, Tongqing WANG, Kun LI, Xinchun LU
-
Patent number: 9989704Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a first and a second reflectively terminated element and an optical switch being capable of selectively connecting to one of the first and second reflectively terminated elements, and wherein the at least one of the plurality of dispersion compensation units is adapted to provide a substantially zero dispersion to an optical signal, coming from the multi-port optical circulator, when the optical switch connects to the first reflectively terminated element and is adapted to provide a non-zero dispersion to the optical signal when the optical switch connects to the second reflectively terminated element.Type: GrantFiled: June 27, 2016Date of Patent: June 5, 2018Assignee: LUXAR TECH INCInventors: Tongqing Wang, Dobby Lam, Jinghui Li, Ming Ding
-
Publication number: 20170336567Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a first and a second reflectively terminated element and an optical switch being capable of selectively connecting to one of the first and second reflectively terminated elements, and wherein the at least one of the plurality of dispersion compensation units is adapted to provide a substantially zero dispersion to an optical signal, coming from the multi-port optical circulator, when the optical switch connects to the first reflectively terminated element and is adapted to provide a non-zero dispersion to the optical signal when the optical switch connects to the second reflectively terminated element.Type: ApplicationFiled: June 27, 2016Publication date: November 23, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li, Ming Ding
-
Patent number: 9817189Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.Type: GrantFiled: June 17, 2014Date of Patent: November 14, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Publication number: 20170219773Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.Type: ApplicationFiled: June 17, 2014Publication date: August 3, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Patent number: 9709747Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.Type: GrantFiled: December 2, 2016Date of Patent: July 18, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Patent number: 9690049Abstract: Embodiments of present invention provide an optical signal transportation system. The system includes a first and a second optical line protection (OLP) node; a working signal transmission medium and a protection signal transmission medium between the first and second OLP nodes providing transportation paths for an optical signal from the first OLP node to the second OLP node; and at least one digital dispersion compensation module (DDCM) connected to at least one of the working and protection signal transmission media inside the second OLP node, wherein the DDCM includes a plurality of dispersion compensation units (DCUs) with each DCU being capable of providing either a positive or a negative dispersion selected by an optical switch to the optical signal, and wherein the DDCM is capable of providing the optical signal a total dispersion determined by the optical switch of each of the plurality of DCUs.Type: GrantFiled: June 17, 2014Date of Patent: June 27, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Publication number: 20170082804Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.Type: ApplicationFiled: December 2, 2016Publication date: March 23, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Patent number: 9575254Abstract: Embodiments of present invention provide a digital dispersion compensation module. The digital dispersion compensation module includes a multi-port optical circulator; and a plurality of dispersion compensation units connected to the multi-port optical circulator, wherein at least one of the plurality of dispersion compensation units includes a fiber-bragg grating (FBG) having a first port and a second port; and an optical switch being capable of selectively connecting to one of the first port and the second port of the FBG, wherein the at least one of the plurality of dispersion compensation units is adapted to provide a positive dispersion to an optical signal, from the multi-port optical circulator, when the optical switch connects to the first port of the FBG and is adapted to provide a negative dispersion to the optical signal when the optical switch connects to the second port of the FBG.Type: GrantFiled: June 17, 2014Date of Patent: February 21, 2017Inventors: Tongqing Wang, Dobby Lam, Jinghui Li
-
Publication number: 20150365317Abstract: Embodiments of present invention provide an optical signal transportation system. The system includes a first and a second optical line protection (OLP) node; a working signal transmission medium and a protection signal transmission medium between the first and second OLP nodes providing transportation paths for an optical signal from the first OLP node to the second OLP node; and at least one digital dispersion compensation module (DDCM) connected to at least one of the working and protection signal transmission media inside the second OLP node, wherein the DDCM includes a plurality of dispersion compensation units (DCUs) with each DCU being capable of providing either a positive or a negative dispersion selected by an optical switch to the optical signal, and wherein the DDCM is capable of providing the optical signal a total dispersion determined by the optical switch of each of the plurality of DCUs.Type: ApplicationFiled: June 17, 2014Publication date: December 17, 2015Inventors: Tongqing Wang, Dobby Lam, Jinghui Li