Patents by Inventor Tony P. Chiang

Tony P. Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140166107
    Abstract: Methods for improving the efficiency of solar cells are disclosed. A solar cell consistent with the present disclosure includes a back contact metal layer disposed on a substrate. The solar cell also includes an electron reflector material(s) layer formed on the back contact metal layer and an absorber material(s) layer disposed on the electron reflector material(s) layer. In addition, the solar cell includes a buffer material(s) layer formed on the absorber material(s) layer wherein the electron reflector material(s) layer, absorber material(s) layer, and buffer material(s) layer form a pn junction within the solar cell. Furthermore, a TCO material(s) layer is formed on the buffer material(s) layer. In addition, the front contact layer is formed on the TCO material(s) layer.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Mankoo Lee, Sergey Barabash, Tony P. Chiang, Dipankar Pramanik
  • Publication number: 20140166616
    Abstract: Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber, a remote plasma source, and a showerhead. Inert gas ports within the showerhead assembly can be used to alter the concentration and energy of reactive radical or reactive neutral species generated by the remote plasma source in different regions of the showerhead. This allows the showerhead to be used to apply a surface treatment to different regions of the surface of a substrate. Varying parameters such as the remote plasma parameters, the inert gas flows, pressure, and the like allow different regions of the substrate to be treated in a combinatorial manner.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Sunil Shanker, Tony P. Chiang, Chi-I Lang, Sandip Niyogi
  • Patent number: 8750021
    Abstract: According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: June 10, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Prashant B. Phatak
  • Patent number: 8748237
    Abstract: A resistor structure incorporated into a resistive switching memory cell or device to form memory devices with improved device performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory device. A method is also provided for making such memory device. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory device, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory device. The incorporation of the resistor structure is very useful in obtaining desirable levels of device switching currents that meet the switching specification of various types of memory devices. The memory devices may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: June 10, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Dipankar Pramanik, Tony P. Chiang, Mankoo Lee
  • Publication number: 20140154859
    Abstract: Provided are methods for processing different materials on the same substrate for high throughput screening of multiple ReRAM materials. A substrate may be divided into multiple site isolated regions, each region including one or more base structures operable as bottom electrodes of ReRAM cells. Different test samples may be formed over these base structures in a combinatorial manner. Specifically, each site isolated region may receive a test sample that has a different characteristic than at least one other sample provided in another region. The test samples may have different compositions and/or thicknesses or be deposited using different techniques. These different samples are then etched in the same operation to form portions of the samples. Each portion is substantially larger than the corresponding base structure and fully covers this base structure to protect the interface between the base structure and the portion during etching.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 5, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Vidyut Gopal, Tony P. Chiang, Imran Hashim, Randall J. Higuchi, Robert A. Huertas, Hieu Pham, Yun Wang
  • Patent number: 8741712
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high-k phase of a subsequently deposited dielectric layer. The high-k dielectric layer includes a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: June 3, 2014
    Assignees: Intermolecular, Inc., Elpidia Memory, Inc.
    Inventors: Tony P. Chiang, Wim Y. Deweerd, Sandra G Malhotra
  • Publication number: 20140138602
    Abstract: Controlled localized defect paths for resistive memories are described, including a method for forming controlled localized defect paths including forming a first electrode forming a metal oxide layer on the first electrode, masking the metal oxide to create exposed regions and concealed regions of a surface of the metal oxide, and altering the exposed regions of the metal oxide to create localized defect paths beneath the exposed regions.
    Type: Application
    Filed: January 24, 2014
    Publication date: May 22, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Michael Miller, Tony P. Chiang, Prashant B. Phatak
  • Patent number: 8726838
    Abstract: According to various embodiments of the disclosure, an apparatus and method for enhanced deposition and etch techniques is described, including a pedestal, the pedestal having at least two electrodes embedded in the pedestal, a showerhead above the pedestal, a plasma gas source connected to the showerhead, wherein the showerhead is configured to deliver plasma gas to a processing region between the showerhead and the substrate and a power source operably connected to the showerhead and the at least two electrodes with plasma being substantially contained in an area which corresponds with one electrode of the at least two electrodes.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sunil Shanker, Tony P. Chiang, Chi-I Lang
  • Publication number: 20140134794
    Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 8723156
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 13, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
  • Publication number: 20140109030
    Abstract: Methods are described for performing detailed Technology Computer Aided Design (TCAD) simulations of electromigration (EM) failure in a standard test structure suitable for the simulation of integrated circuit (IC) conductive interconnects. Methods are described for performing these simulation so as to extract from the results of these simulations criteria substantially underlying the EM lifetime of interconnects, thereby permitting rapid diagnosis of potential sites of EM failure early in the IC design and fabrication process, and thereby allowing more rapid development of reliable ICs robust against EM failure. Specific results for EM failure criteria in Cu interconnects are also presented.
    Type: Application
    Filed: July 31, 2013
    Publication date: April 17, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Mankoo Lee, Tony P. Chiang, Dipankar Pramanik
  • Patent number: 8697606
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 15, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, David E. Lazovsky, Thomas R. Boussie, Alexander Gorer
  • Patent number: 8698121
    Abstract: A resistive switching memory is described, including a first electrode comprising doped silicon having a first work function, a second electrode having a second work function that is different from the first work function by between 0.1 and 1.0 electron volts (eV), a metal oxide layer between the first electrode and the second electrode, the metal oxide layer switches using bulk-mediated switching using unipolar or bipolar switching voltages for switching from a low resistance state to a high resistance state and vice versa.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 15, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Prashant B. Phatak, Tony P. Chiang, Michael Miller, Wen Wu
  • Publication number: 20140090596
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 3, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Gaurav Verma, Tony P. Chiang, Imran Hashim, Sandra G. Malhotra, Prashant B. Phatak, Kurt H. Weiner
  • Patent number: 8683420
    Abstract: A method and system of improved reliability testing includes providing a first substrate and a second substrate, each substrate comprising only a first metallization layer; processing regions on a first substrate by combinatorially varying at least one of materials, unit processes, and process sequences; performing a first reliability test on the processed regions on the first substrate to generate first results; processing regions on a second substrate in a combinatorial manner by varying at least one of materials, unit processes, and process sequences based on the first results of the first reliability test; performing a second reliability test on the processed regions on the second substrate to generate second results; and determining whether the first substrate and the second substrate meet a predetermined quality threshold based on the second results.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 25, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Ryan Clarke, Chi-I Lang, Yoram Schwarz
  • Publication number: 20140080282
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high-k phase of a subsequently deposited dielectric layer. The high-k dielectric layer includes a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 20, 2014
    Applicants: Elpida Memory, Inc., Intermolecular, Inc.
    Inventors: Tony P. Chiang, Wim Y. Deweerd, Sandra G. Malhotra
  • Publication number: 20140077336
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high-k phase of a subsequently deposited dielectric layer. The high-k dielectric layer includes a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Application
    Filed: January 9, 2013
    Publication date: March 20, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Tony P. Chiang, Wim Y. Deweerd, Sandra G. Malhotra
  • Publication number: 20140071435
    Abstract: Simultaneous measurement of an internal quantum efficiency and an external quantum efficiency of a solar cell using an emitter that emits light; a three-way beam splitter that splits the light into solar cell light and reference light, wherein the solar cell light strikes the solar cell; a reference detector that detects the reference light; a reflectance detector that detects reflectance light, wherein the reflectance light comprises a portion of the solar cell light reflected off the solar cell; a source meter operatively coupled to the solar cell; a multiplexer operatively coupled to the solar cell, the reference detector, and the reflectance detector; and a computing device that simultaneously computes the internal quantum efficiency and the external quantum efficiency of the solar cell.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Publication number: 20140070213
    Abstract: The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 13, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Thomas R. Boussie, Tony P. Chiang, Alexander Gorer, David E. Lazovsky
  • Publication number: 20140073107
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Application
    Filed: May 17, 2013
    Publication date: March 13, 2014
    Applicant: Intermolecular Inc.
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik