Patents by Inventor Tony P. Chiang

Tony P. Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140065819
    Abstract: Methods for improving contact resistance, for example, to a semiconductor region such as a source or a drain region, are disclosed. The methods can include depositing a layer on a substrate, wherein the layer can include a first element to form a silicide with the substrate and a second element to lower a contact resistance between the silicide and the substrate. The second element can include a dopant, which can enhance trap assisted tunneling or lower the Schottky barrier height between the silicide layer and the substrate.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 6, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Khaled Ahmed, Tony P. Chiang
  • Publication number: 20140065790
    Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Publication number: 20140065788
    Abstract: In some embodiments of the present invention, methods of using one or more small spot showerhead apparatus to deposit materials using CVD, PECVD, ALD, or PEALD on small spots in a site isolated, combinatorial manner are described. The small spot showerheads may be configured within a larger combinatorial showerhead to allow multi-layer film stacks to be deposited in a combinatorial manner.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Albert Lee, Tony P. Chiang, Jason Wright
  • Patent number: 8658997
    Abstract: Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 25, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, Sandisk 3D LLC
    Inventor: Tony P. Chiang
  • Publication number: 20140051223
    Abstract: A resistor structure incorporated into a resistive switching memory cell or device to form memory devices with improved device performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory device. A method is also provided for making such memory device. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory device, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory device. The incorporation of the resistor structure is very useful in obtaining desirable levels of device switching currents that meet the switching specification of various types of memory devices. The memory devices may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Dipankar Pramanik, Tony P. Chiang, Mankoo Lee
  • Publication number: 20140051210
    Abstract: Nonvolatile memory elements that are based on resistive switching memory element layers are provided. A nonvolatile memory element may have a resistive switching metal oxide layer. The resistive switching metal oxide layer may have one or more layers of oxide. A resistive switching metal oxide may be doped with a dopant that increases its melting temperature and enhances its thermal stability. Layers may be formed to enhance the thermal stability of the nonvolatile memory element. An electrode for a nonvolatile memory element may contain a conductive layer and a buffer layer.
    Type: Application
    Filed: October 24, 2013
    Publication date: February 20, 2014
    Applicant: Intermolecular Inc.
    Inventors: Sandra G Malhotra, Sean Barstow, Tony P. Chiang, Pragati KUMAR, Prashant B Phatak, Sunil Shanker, Wen Wu
  • Patent number: 8652923
    Abstract: Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 18, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Publication number: 20140042384
    Abstract: Nonvolatile memory elements including resistive switching metal oxides may be formed in one or more layers on an integrated circuit. Each memory element may have a first conductive layer, a metal oxide layer, and a second conductive layer. Electrical devices such as diodes may be coupled in series with the memory elements. The first conductive layer may be formed from a metal nitride. The metal oxide layer may contain the same metal as the first conductive layer. The metal oxide may form an ohmic contact or a Schottky contact with the first conductive layer. The second conductive layer may form an ohmic contact or Schottky contact with the metal oxide layer. The first conductive layer, the metal oxide layer, and the second conductive layer may include sublayers. The second conductive layer may include an adhesion or barrier layer and a workfunction control layer.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 13, 2014
    Applicant: Intermolecular Inc.
    Inventors: Pragati Kumar, Sean Barstow, Tony P. Chiang, Sandra G. Malhotra
  • Patent number: 8648418
    Abstract: Controlled localized defect paths for resistive memories are described, including a method for forming controlled localized defect paths including forming a first electrode forming a metal oxide layer on the first electrode, masking the metal oxide to create exposed regions and concealed regions of a surface of the metal oxide, and altering the exposed regions of the metal oxide to create localized defect paths beneath the exposed regions.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 11, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Tony P. Chiang, Prashant B. Phatak
  • Publication number: 20140038352
    Abstract: Non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. The metal oxide switches using bulk-mediated switching, has a bandgap greater than 4 electron volts (eV), has a set voltage for a set operation of at least one volt per one hundred angstroms of a thickness of the metal oxide, and has a leakage current density less than 40 amps per square centimeter (A/cm2) measured at 0.5 volts (V) per twenty angstroms of the thickness of the metal oxide.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Intermolecular Inc.
    Inventors: Prashant B Phatak, Tony P. Chiang, Pragati KUMAR, Michael Miller
  • Patent number: 8633039
    Abstract: In embodiments of the current invention, methods of combinatorial processing and a test chip for use in these methods are described. These methods and test chips enable the efficient development of materials, processes, and process sequence integration schemes for semiconductor manufacturing processes. In general, the methods simplify the processing sequence of forming devices or partially formed devices on a test chip such that the devices can be tested immediately after formation. The immediate testing allows for the high throughput testing of varied materials, processes, or process sequences on the test chip. The test chip has multiple site isolated regions where each of the regions is varied from one another and the test chip is designed to enable high throughput testing of the different regions.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: January 21, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Gaurav Verma, Tony P. Chiang, Imran Hashim, Sandra G. Malhotra, Prashant B. Phatak, Kurt H. Weiner
  • Publication number: 20140014892
    Abstract: A resistive-switching memory element is described. The memory element includes a first electrode, a porous layer over the first electrode including a point defect embedded in a plurality of pores of the porous layer, and a second electrode over the porous layer, wherein the nonvolatile memory element is configured to switch between a high resistive state and a low resistive state.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 16, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Chi-I Lang, Prashant B. Phatak
  • Publication number: 20140001430
    Abstract: This disclosure provides a method of fabricating a semiconductor device layer and associated memory cell structures. By performing a surface treatment process (such as ion bombardment) of a semiconductor device layer to create defects having a deliberate depth profile, one may create multistable memory cells having more consistent electrical parameters. For example, in a resistive-switching memory cell, one may obtain a tighter distribution of set and reset voltages and lower forming voltage, leading to improved device yield and reliability. In at least one embodiment, the depth profile is selected to modulate the type of defects and their influence on electrical properties of a bombarded metal oxide layer and to enhance uniform defect distribution.
    Type: Application
    Filed: May 17, 2013
    Publication date: January 2, 2014
    Applicant: Intermolecular Inc.
    Inventors: Michael Miller, Tony P. Chiang, Xiying Costa, Tanmay Kumar, Prashant B. Phatak, April Schricker
  • Publication number: 20140001431
    Abstract: This disclosure provides a nonvolatile memory device and related methods of manufacture and operation. The device may include one or more resistive random access memory (ReRAM) approaches to provide a memory device with more predictable operation. In particular, the forming voltage required by particular designs may be reduced through the use of a barrier layer, a reverse polarity forming voltage pulse, a forming voltage pulse where electrons are injected from a lower work function electrode, or an anneal in a reducing environment. One or more of these techniques may be applied, depending on the desired application and results.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: Intermolecular Inc.
    Inventors: Pragati KUMAR, Tony P. Chiang, Prashant B. Phatak, Yun Wang
  • Publication number: 20130341584
    Abstract: Resistive-switching memory elements having improved switching characteristics are described, including a memory element having a first electrode and a second electrode, a switching layer between the first electrode and the second electrode comprising hafnium oxide and having a first thickness, and a coupling layer between the switching layer and the second electrode, the coupling layer comprising a material including metal titanium and having a second thickness that is less than 25 percent of the first thickness.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Ronald J. Kuse, Tony P. Chiang, Imran Hashim
  • Publication number: 20130342230
    Abstract: Measuring current-voltage (I-V) characteristics of a solar cell using a lamp that emits light, a substrate that includes a plurality of solar cells, a positive electrode attached to the solar cells, and a negative electrode peripherally deposited around each of the solar cells and connected to a common ground, an articulation platform coupled to the substrate, a multi-probe switching matrix or a Z-stage device, a programmable switch box coupled to the multi-probe switching matrix or Z-stage device and selectively articulating the probes by raising the probes until in contact with at least one of the positive electrode and the negative electrode and lowering the probes until contact is lost with at least one of the positive electrode and the negative electrode, a source meter coupled to the programmable switch box and measuring the I-V characteristics of the substrate.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Applicant: Intermolecular, Inc
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Patent number: 8614787
    Abstract: Simultaneous measurement of an internal quantum efficiency and an external quantum efficiency of a solar cell using an emitter that emits light; a three-way beam splitter that splits the light into solar cell light and reference light, wherein the solar cell light strikes the solar cell; a reference detector that detects the reference light; a reflectance detector that detects reflectance light, wherein the reflectance light comprises a portion of the solar cell light reflected off the solar cell; a source meter operatively coupled to the solar cell; a multiplexer operatively coupled to the solar cell, the reference detector, and the reflectance detector; and a computing device that simultaneously computes the internal quantum efficiency and the external quantum efficiency of the solar cell.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 24, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Chi-I Lang
  • Publication number: 20130334491
    Abstract: Methods for forming a NiO film on a substrate for use with a resistive switching memory device are presenting including: preparing a nickel ion solution; receiving the substrate, where the substrate includes a bottom electrode, the bottom electrode utilized as a cathode; forming a Ni(OH)2 film on the substrate, where the forming the Ni(OH)2 occurs at the cathode; and annealing the Ni(OH)2 film to form the NiO film, where the NiO film forms a portion of a resistive switching memory element. In some embodiments, methods further include forming a top electrode on the NiO film and before the forming the Ni(OH)2 film, pre-treating the substrate. In some embodiments, methods are presented where the bottom electrode and the top electrode are a conductive material such as: Ni, Pt, Ir, Ti, Al, Cu, Co, Ru, Rh, a Ni alloy, a Pt alloy, an Ir alloy, a Ti alloy, an Al alloy, a Cu alloy, a Co alloy, a Ru alloy, and an Rh alloy.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Intermolecular Inc.
    Inventors: Zhi-Wen Wen Sun, Tony P. Chiang, Chi-I Lang, Jinhong Tong
  • Publication number: 20130334484
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicants: Intermolecular Inc., SanDisk 3D LLC, Kabushiki Kaisha Toshiba
    Inventors: Yun Wang, Tony P. Chiang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik
  • Patent number: 8609519
    Abstract: In some embodiments of the present invention, methods of using one or more small spot showerhead apparatus to deposit materials using CVD, PECVD, ALD, or PEALD on small spots in a site isolated, combinatorial manner are described. The small spot showerheads may be configured within a larger combinatorial showerhead to allow multi-layer film stacks to be deposited in a combinatorial manner.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 17, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Albert Lee, Tony P. Chiang, Jason Wright