Patents by Inventor Torsten Karzig

Torsten Karzig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10490600
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 26, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Patent number: 10346348
    Abstract: Among the embodiments disclosed herein are example methods for generating all Clifford gates for a system of Majorana Tetron qubits (quasiparticle poisoning protected) given the ability to perform certain 4 Majorana zero mode measurements. Also disclosed herein are example designs for scalable quantum computing architectures that enable the methods for generating the Clifford gates, as well as other operations on the states of MZMs. These designs are configured in such a way as to allow the generation of all the Clifford gates with topological protection and non-Clifford gates (e.g. a ?/8-phase gate) without topological protection, thereby producing a computationally universal gate set. Several possible realizations of these architectures are disclosed.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: July 9, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Matthew Hastings, Torsten Karzig, Parsa Bonderson, Michael Freedman, Roman Lutchyn, Chetan Nayak
  • Publication number: 20180053113
    Abstract: Embodiments of the disclosed technology comprise methods and/or devices for performing measurements and/or manipulations of the collective state of a set of Majorana quasiparticles/Majorana zero modes (MZMs). Example methods/devices utilize the shift of the combined energy levels due to coupling multiple quantum systems (e.g., in a Stark-effect-like fashion). The example methods can be used for performing measurements of the collective topological charge or fermion parity of a group of MZMs (e.g., a pair of MZMs or a group of 4 MZMs). The example devices can be utilized in any system supporting MZMs.
    Type: Application
    Filed: June 27, 2017
    Publication date: February 22, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Roman Lutchyn, Parsa Bonderson, Michael Freedman, Torsten Karzig, Chetan Nayak, Jason Alicea, Christina Knapp
  • Publication number: 20180053809
    Abstract: Various embodiments of a modular unit for a topologic qubit and of scalable quantum computing architectures using such modular units are disclosed herein. For example, one example embodiment is a modular unit for a topological qubit comprising 6 Majorana zero modes (MZMs) on a mesoscopic superconducting island. These units can provide the computational MZMs with protection from quasiparticle poisoning. Several possible realizations of these modular units are described herein. Also disclosed herein are example designs for scalable quantum computing architectures comprising the modular units together with gates and reference arms (e.g., quantum dots, Majorana wires, etc.) configured to enable joint parity measurements to be performed for various combinations of two or four MZMs associated with one or two modular units, as well as other operations on the states of MZMs.
    Type: Application
    Filed: June 28, 2017
    Publication date: February 22, 2018
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Michael Freedman, Chetan Nayak, Roman Lutchyn, Torsten Karzig, Parsa Bonderson
  • Publication number: 20180052806
    Abstract: Among the embodiments disclosed herein are example methods for generating all Clifford gates for a system of Majorana Tetron qubits (quasiparticle poisoning protected) given the ability to perform certain 4 Majorana zero mode measurements. Also disclosed herein are example designs for scalable quantum computing architectures that enable the methods for generating the Clifford gates, as well as other operations on the states of MZMs. These designs are configured in such a way as to allow the generation of all the Clifford gates with topological protection and non-Clifford gates (e.g. a ?/8-phase gate) without topological protection, thereby producing a computationally universal gate set. Several possible realizations of these architectures are disclosed.
    Type: Application
    Filed: June 28, 2017
    Publication date: February 22, 2018
    Applicant: Microsof Technology Licensing, LLC
    Inventors: Matthew Hastings, Torsten Karzig, Parsa Bonderson, Michael Freedman, Roman Lutchyn, Chetan Nayak