Patents by Inventor Toru Nishizawa

Toru Nishizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7024850
    Abstract: An exhaust gas purifying system for an internal combustion engine of an automotive vehicle. The exhaust gas purifying system includes an exhaust gas purifying catalyst disposed in an exhaust gas passage of the engine to remove an exhaust gas component. A concentration sensor is disposed in the exhaust gas passage downstream of the exhaust gas purifying catalyst to detect a concentration of the exhaust gas component. Additionally, a control unit is provided programmed to carry out (a) detecting an activity transition time at which the exhaust gas purifying catalyst changes from an inactive state to an active state, in accordance with the concentration of the exhaust gas component detected by the concentration sensor, and (b) judging a deterioration of the exhaust gas purifying catalyst at the activity transition time.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: April 11, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toru Nishizawa, Yasuhisa Kitahara
  • Publication number: 20050039444
    Abstract: A combustion control apparatus operates an internal combustion engine in a split retard combustion mode during regenerating an exhaust purifier such as a NOx trap. In the split retard combustion mode, the combustion control apparatus controls a first fuel injection to cause preliminary combustion at or near top dead center, and controls a second fuel injection to cause main combustion after an end of the preliminary combustion. In this manner, the combustion control apparatus controls an exhaust gas temperature, or an exhaust air-fuel ratio, without increasing exhaust smoke. During the split retard combustion mode, the combustion control apparatus controls the excess air ratio to vary the exhaust gas temperature, if there is a request for shifting the exhaust gas temperature. The combustion control apparatus adjusts the second fuel injection timing in accordance with the excess air ratio.
    Type: Application
    Filed: July 21, 2004
    Publication date: February 24, 2005
    Inventors: Toru Nishizawa, Yasuhisa Kitahara
  • Publication number: 20050022506
    Abstract: In a combustion control system, a control unit determines, based on an operating condition of an exhaust purifying device, whether a request for an exhaust temperature rise or a rich A/F ratio engine operating mode is present. The control unit executes, by way of fuel injection control in presence of the request of the exhaust temperature rise or the rich operating mode, a split retard combustion mode in which a main combustion needed to produce a main engine torque and at least one preliminary combustion occurring prior to the main combustion are both achieved, and the preliminary combustion occurs near top dead center on a compression stroke, and the main combustion initiates after completion of the preliminary combustion. The control unit simultaneously executes an exhaust-emission reduction control that reduces HC and CO emissions, while keeping the excess air factor at a desired value in the catalyst deactivated state.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 3, 2005
    Inventors: Toru Nishizawa, Masayoshi Kishino, Yasuhisa Kitahara
  • Publication number: 20040055280
    Abstract: An exhaust gas purifying system for an internal combustion engine of an automotive vehicle. The exhaust gas purifying system includes an exhaust gas purifying catalyst disposed in an exhaust gas passage of the engine to remove an exhaust gas component. A concentration sensor is disposed in the exhaust gas passage downstream of the exhaust gas purifying catalyst to detect a concentration of the exhaust gas component. Additionally, a control unit is provided programmed to carry out (a) detecting an activity transition time at which the exhaust gas purifying catalyst changes from an inactive state to an active state, in accordance with the concentration of the exhaust gas component detected by the concentration sensor, and (b) judging a deterioration of the exhaust gas purifying catalyst at the activity transition time.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 25, 2004
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Toru Nishizawa, Yasuhisa Kitahara