Patents by Inventor Toru Sano

Toru Sano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060032071
    Abstract: A channel (103) is formed in a substrate (101) and a drying area (107) comprising a plurality of pillars (105) is formed in one end of the channel (103). A cover (109) is formed over the channel (103), except the area above the drying area (107). When a sample is introduced into the channel (103), it is guided to the drying area (107) by capillary phenomenon. The drying area (107) is heated by a heater (111) to evaporate the solvent for concentrating and drying the solute.
    Type: Application
    Filed: November 28, 2003
    Publication date: February 16, 2006
    Inventors: Masakazu Baba, Toru Sano, Kazuhiro Uda, Hisao Kawaura, Noriyuki Iguchi, Wataru Hattori, Hiroko Someya, Minoru Asogawa
  • Publication number: 20060035386
    Abstract: A channel (1) formed in a substrate (41) branches into channels (2, 3) at a branch point (43). On this branch point, obstacles (8) having a columnar structure are aligned at certain intervals.
    Type: Application
    Filed: November 25, 2003
    Publication date: February 16, 2006
    Applicant: NEC CORPORATION
    Inventors: Wataru Hattori, Masakazu Baba, Toru Sano, Kazuhiro Iida, Hisao Kawaura, Hiroko Someya
  • Publication number: 20060011480
    Abstract: A separation apparatus (100) has a separation channel (112), a partition wall (301a) and a partition wall (301b), wherein each of the partition wall (301a) and the partition wall (301b) has a capture portion (300) formed thereon. Molecules having a size acceptable by the capture portions (300) provided on the partition wall (301a) and the partition wall (301b) are captured by the capture portion (300) and reduced in the travel speed through the separation channel (112), and this makes it possible to precisely separate the sample depending on the molecular size.
    Type: Application
    Filed: October 29, 2003
    Publication date: January 19, 2006
    Inventors: Toru Sano, Masakazu Baba, Kazuhiro Iida, Hisao Kawaura, Noriyuki Iguchi, Toshitsugu Sakamoto, Wataru Hattori, Hiroko Someya
  • Publication number: 20060000772
    Abstract: A channel (103) is formed in a substrate (101), and a portion of the channel (103) is provided with a separating portion (107). A number of pillars are formed in the separating portion (107), and an adsorptive substance layer having an adsorptive substance, which exhibits a specific interaction for a specific substance, immobilized on the surface thereof, is formed. Once a sample is introduced into the channel (103), the specific substance is adsorbed on the adsorptive substance layer to be separated from other components. After washing the inside of the channel (103) with a buffer solution, the specific substance is desorbed from the adsorptive substance layer by flowing a eluting solution through the channel (103) and the specific substance is recovered.
    Type: Application
    Filed: November 28, 2003
    Publication date: January 5, 2006
    Inventors: Toru Sano, Masakazu Baba, Kazuhiro Iida, Hisa Kawaura, Noriyuki Iguchi, Hiroko Someya, Minoru Asogawa
  • Patent number: 6881315
    Abstract: A fractionating apparatus is used for fractionating sample into micro-structures different in size, and includes a fractionating unit formed with a fractionating passage; the fractionating passage is defined in a groove formed in a substrate of the fractionating unit, and pillar patches are formed in the groove at intervals wider than the gap among the pillar patches; while the sample is migrated through the fractionating passage, small-sized DNA molecules are trapped in the pillar patches, and large-sized DNA molecules are smoothly migrated through the wide intervals; this results in that the large-sized DNA molecules reaches the end of the fractionating passage faster than the small-sized DNA molecules without clogging.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: April 19, 2005
    Assignee: NEC Corporation
    Inventors: Kazuhiro Iida, Hisao Kawaura, Masakazu Baba, Toshitsugu Sakamoto, Toru Sano, Noriyuki Iguchi
  • Publication number: 20040256318
    Abstract: There is disclosed a separation device in which separation flow paths for allowing the passage of only molecules having a predetermined size and smaller sizes are disposed between two flow channels set apart by a partition; and a separation method using the device. According to the separation technique, substances having small sizes such as cells, nucleic acids and proteins can be separated by the use of a small amount of a sample in a short time with excellent resolution, and problems of clogging and the like can also be solved.
    Type: Application
    Filed: April 26, 2004
    Publication date: December 23, 2004
    Inventors: Kazuhiro Iida, Noriyuki Iguchi, Masakazu Baba, Hiroko Someya, Hisao Kawaura, Toru Sano, Toshitsugu Sakamoto
  • Publication number: 20040108208
    Abstract: A separator has a specimen separating area comprising a number of recesses defined in an inner wall of a flow passage through which a specimen passes. For separating nucleic acid and protein, the recesses have openings whose maximum diameter is 300 nm or less, and adjacent ones of the recesses are spaced at an average interval of 300 nm or less.
    Type: Application
    Filed: August 19, 2003
    Publication date: June 10, 2004
    Inventors: Kazuhiro Iida, Noriyuki Iguchi, Hisao Kawaura, Toru Sano, Masakazu Baba, Hiroko Someya, Toshitsugu Sakamoto
  • Publication number: 20030049563
    Abstract: A fractionating apparatus is used for fractionating sample into micro-structures different in size, and includes a fractionating unit formed with a fractionating passage; the fractionating passage is defined in a groove formed in a substrate of the fractionating unit, and pillar patches are formed in the groove at intervals wider than the gap among the pillar patches; while the sample is migrated through the fractionating passage, small-sized DNA molecules are trapped in the pillar patches, and large-sized DNA molecules are smoothly migrated through the wide intervals; this results in that the large-sized DNA molecules reaches the end of the fractionating passage faster than the small-sized DNA molecules without clogging.
    Type: Application
    Filed: July 31, 2002
    Publication date: March 13, 2003
    Applicant: NEC CORPORATION
    Inventors: Kazuhiro Iida, Hisao Kawaura, Masakazu Baba, Toshitsugu Sakamoto, Toru Sano, Noriyuki Iguchi
  • Patent number: 6235407
    Abstract: A highly corrosion resistant steel sheet for fuel tank comprising a lowermost layer of Zn or Zn-based plating layer deposited on each side of the steel sheet; a chemical conversion film deposited on each of the Zn or Zn-based plating layer; a metal powder-containing organic resin film deposited on one of the chemical conversion film, said metal powder-containing organic resin film containing Al and Ni metal powders and an amine modified epoxy resin; and a silica-containing organic resin film deposited on the other chemical conversion film, said silica-containing organic resin film containing at least one resin having at least one functional group selected from hydroxyl group, isocyanate group, carboxyl group, glycidyl group, and amino group; silica; and a lubricant.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: May 22, 2001
    Assignees: Kawasaki Steel Corporation, Mitsubishi Motors Corporation
    Inventors: Hiroyuki Ogata, Sachiko Suzuki, Kazuo Mochizuki, Takashi Isogai, Shigeru Usuda, Toru Sano
  • Patent number: 5756277
    Abstract: A method for producing a silver halide emulsion comprising high silver chloride tabular grains each having a chloride content of 50 mol % or more and having a major plane comprising a (111) face, which comprises a step for conducting nucleation of said grains substantially in the absence of a crystal phase controlling agent to form grains which have two twin planes parallel with each other and of which most of the surface are (100) faces, a step for ripening said grains by adding a crystal phase controlling agent which adsorbs to the (111) face or a mixture of a crystal phase controlling agent which adsorbs to the (111) face and a protective colloid to reduce the ratio of grains other than the grains having two or more parallel twin planes and then a step for growing with remaining tabular grains having a major plane mainly comprising a (111) face to form tabular grains having a major plane comprising a (111) face.
    Type: Grant
    Filed: December 28, 1995
    Date of Patent: May 26, 1998
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Toru Sano
  • Patent number: 5420004
    Abstract: An internal latent image type positive silver halide emulsion has improved sensitivity reduction in low illuminance exposures. A color diffusion transfer light-sensitive material incorporates the emulsion and has reduced sensitivity reduction. The internal latent image type positive silver halide emulsion is prepared using a polymer having a repetitive unit derived from an ethylenically unsaturated monomer having at least one thioether structure on a side chain as a deflocculating agent to form silver halide grains and subjecting the grain surfaces to a chemical sensitization in the presence of a polymer having a repetitive unit represented by the following Formula (I): ##STR1## wherein R.sup.1 represents a hydrogen atom or a substituted or unsubstituted alkyl group and Q represents a group selected from the group consisting of groups represented by the following Formula (1) to Formula (4): ##STR2## wherein q represents an integer of 2 to 4; ##STR3## wherein R.sup.2 and R.sup.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: May 30, 1995
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Munehisa Fujita, Toru Sano