Patents by Inventor Toshiaki Kusunoki

Toshiaki Kusunoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317401
    Abstract: The current stability of a field emission electron source and a Schottky electron source where a {100} plane of a hexaboride single crystal is used as an electron emission surface is improved. The electron source includes a tip of a hexaboride single crystal with a <100> axis, in which a top facet of a {100} plane that is surrounded by side facets including at least four {n11} planes and at least four {n10} planes where n represents an integer of 1, 2, or 3 is formed at a front end of the tip of the hexaboride single crystal, and a total area of the side facets of the {n11} planes is more than a total area of the side facets of the {n10} planes.
    Type: Application
    Filed: September 23, 2020
    Publication date: October 5, 2023
    Inventors: Toshiaki KUSUNOKI, Noriaki ARAI, Tomihiro HASHIZUME, Keigo KASUYA
  • Publication number: 20230050424
    Abstract: Provided are a charged particle detector and a radiation detector capable of obtaining an observation image with correct contrast without saturation even when the number of signal electrons incident on a detector is increased due to an increase in the current of a primary electron beam. The charged particle detector is characterized by having a scintillator (109) having a signal electron detection surface (109a) for detecting signal electrons emitted when a specimen is irradiated with primary electrons and converting the signal electrons into light, a light detector (111) having a light detection surface (111a) for detecting the light emitted from the scintillator (109), and a light guide (110) disposed between the scintillator (109) and the light detector (111), wherein the area of the light detection surface (111a) is larger than the area of the signal electron detection surface (109a).
    Type: Application
    Filed: March 2, 2020
    Publication date: February 16, 2023
    Inventors: Takumu IWANAKA, Yoshifumi SEKIGUCHI, Toshiaki KUSUNOKI, Shin IMAMURA, Hajime KAWANO
  • Publication number: 20220415603
    Abstract: In a Schottky emitter or a thermal field emitter using a hexaboride single crystal, side emission from portions other than an electron emission portion is reduced. An electron source according to the invention includes: a protrusion (40) configured to emit an electron when an electric field is generated; a shank (41) that supports the protrusion (40) and has a diameter decreasing toward the protrusion (40); and a body (42) that supports the shank (41), in which the protrusion (40), the shank (41), and the body (42) are each made of a hexaboride single crystal, and a part including the shank (41) and the body (42) excluding the protrusion (40) is covered with a material having a work function higher than that of the hexaboride single crystal.
    Type: Application
    Filed: December 24, 2019
    Publication date: December 29, 2022
    Inventors: Toshiaki KUSUNOKI, Tomihiro HASHIZUME, Noriaki ARAI, Keigo KASUYA
  • Publication number: 20220413169
    Abstract: Provided are a scintillator and the like capable of improving emission intensity. A scintillator (S) comprises a sapphire substrate (6), a GaN layer (4) that is provided on the incident side to the sapphire substrate (6) and includes GaN, a quantum well structure (3) provided on the incident side to the GaN layer (4), and a conductive layer (2) provided on the incident side to the quantum well structure (3), wherein a plurality of emitting layers (21) including InGaN and a plurality of barrier layers (22) including GaN are alternatively stacked in the quantum well structure (3), and an oxygen-containing layer (23) including oxygen is provided between the quantum well structure (3) and the conductive layer (2).
    Type: Application
    Filed: November 19, 2020
    Publication date: December 29, 2022
    Inventors: Shin IMAMURA, Toshiaki KUSUNOKI, Eri TAKAHASHI, Yoshifumi SEKIGUCHI, Takayuki KANDA
  • Patent number: 11322329
    Abstract: The invention provides an electron source including a columnar chip of a hexaboride single crystal, a metal pipe that holds the columnar chip of the hexaboride single crystal, and a filament connected to the metal pipe at a central portion. The columnar chip of the hexaboride single crystal is formed into a cone shape at a portion closer to a tip than a portion held in the metal pipe, and a tip end portion having the cone shape has a (310) crystal face. Schottky electrons are emitted from the (310) crystal face. According to the invention, it is possible to provide a novel electron source having monochromaticity, long-term stability of an emitter current, and high current density.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: May 3, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Toshiaki Kusunoki, Tomihiro Hashizume, Keigo Kasuya, Noriaki Arai, Hiromitsu Seino, Minoru Kaneda, Takashi Ohshima, Soichiro Matsunaga
  • Publication number: 20210327674
    Abstract: The invention provides an electron source including a columnar chip of a hexaboride single crystal, a metal pipe that holds the columnar chip of the hexaboride single crystal, and a filament connected to the metal pipe at a central portion. The columnar chip of the hexaboride single crystal is formed into a cone shape at a portion closer to a tip than a portion held in the metal pipe, and a tip end portion having the cone shape has a (310) crystal face. Schottky electrons are emitted from the (310) crystal face. According to the invention, it is possible to provide a novel electron source having monochromaticity, long-term stability of an emitter current, and high current density.
    Type: Application
    Filed: August 27, 2018
    Publication date: October 21, 2021
    Inventors: Toshiaki KUSUNOKI, Tomihiro HASHIZUME, Keigo KASUYA, Noriaki ARAI, Hiromitsu SEINO, Minoru KANEDA, Takashi OHSHIMA, Soichiro MATSUNAGA
  • Patent number: 10707046
    Abstract: An electron source that can be used stably for a long time even when hexaboride is used, and an electron beam device using the electron source are provided. The invention is directed to an electron source which includes a filament made of a metal, a metal tube that is fixed to the filament and has a plurality of recesses disposed at least in two axial directions so as to surround a central axis at an outer periphery, and a columnar hexaboride tip that emits an electron, is disposed so as to protrude from the inside of the metal tube to a side opposite to the filament, and is in contact with a bottom of each of the plurality of recesses of the metal tube.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: July 7, 2020
    Assignee: Hitachi High-Tech Corporation
    Inventors: Toshiaki Kusunoki, Keigo Kasuya, Takashi Ohshima, Tomihiro Hashizume, Noriaki Arai, Yoichi Ose
  • Patent number: 10614941
    Abstract: Provided is a high-performance persistent current switch that is provided with a superconducting coil in which a decrease of a critical current or a critical magnetic field is suppressed. A means for solving the problem is as follows. A persistent current switch provided with a superconducting coil in a switch unit. A superconducting coil 5 includes a winding portion 53 which is formed using a superconductor thin film formed on an outer circumferential face of a base member 50. The winding portion 53 includes a first winding portion 51 and a second winding portion 52 which are formed in a double helical shape to be parallel to each other. A terminating end portion 51b of the first winding portion 51 and a starting end portion 52a of the second winding portion 52, which are adjacent to each other, are connected to each other.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 7, 2020
    Assignee: HITACHI, LTD.
    Inventors: Toshiaki Kusunoki, Hideki Tanaka, Motomune Kodama, Hiroyuki Yamamoto
  • Publication number: 20200091397
    Abstract: Provided is an MgB2 superconductive thin film wire material allowing for lower costs while maintaining superconductive properties that are equal to or greater than those of the MgB2 superconductive thin film wire material of prior art, and to provide a production method for the superconductive thin film wire material. The MgB2 superconductive thin film wire material according to the present invention is a superconductive wire material comprising an MgB2 thin film formed over an elongated metal base material, characterized in that the MgB2 thin film exhibits a critical temperature of 30 K or higher, and has a microscopic organization wherein MgB2 columnar crystal grains stand densely packed on the surface of the elongated metal base material, and a layer of Mg oxide is formed in such a manner as to surround the MgB2 columnar crystal grains in the grain boundary regions of the MgB2 columnar crystal grains.
    Type: Application
    Filed: March 7, 2018
    Publication date: March 19, 2020
    Applicant: HITACHI, LTD.
    Inventors: Takumu IWANAKA, Hiroshi KOTAKI, Toshiaki KUSUNOKI
  • Patent number: 10586674
    Abstract: In order to provide a stable hexaboride single-crystal field emission electron source capable of heat-flashing, this field emission electron source is provided with a metal filament, a metal tube joined thereto, a hexaboride tip that emits electrons, and graphite sheets that are independent of the metal tube and the hexaboride tip. The hexaboride tip is arranged so as not to be in structural contact with the metal tube due to the graphite sheets. The hexaboride tip, the graphite sheets, and the metal tube are configured so as to be mechanically and electrically in contact with one another.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: March 10, 2020
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiaki Kusunoki, Tomihiro Hashizume, Keigo Kasuya, Takashi Ohshima, Yusuke Sakai, Yoichi Ose, Noriaki Arai
  • Patent number: 10522319
    Abstract: An electron beam apparatus which can stably achieve high spatial resolution also during low acceleration observation using CeB6 for the CFE electron source is provided. In an electron beam apparatus having a CFE electron source, the emitter of the electron beam of the CFE electron source is Ce hexaboride or a hexaboride of a lanthanoid metal heavier than Ce, the hexaboride emits the electron beam from the {310} plane, and the number of the atoms of the lanthanoid metal on the {310} plane is larger than the number of boron molecules comprising six boron atoms on the {310} plane.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: December 31, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Keigo Kasuya, Noriaki Arai, Toshiaki Kusunoki, Takashi Ohshima, Tomihiro Hashizume, Yusuke Sakai
  • Publication number: 20190385809
    Abstract: An electron source that can be used stably for a long time even when hexaboride is used, and an electron beam device using the electron source are provided. The invention is directed to an electron source which includes a filament made of a metal, a metal tube that is fixed to the filament and has a plurality of recesses disposed at least in two axial directions so as to surround a central axis at an outer periphery, and a columnar hexaboride tip that emits an electron, is disposed so as to protrude from the inside of the metal tube to a side opposite to the filament, and is in contact with a bottom of each of the plurality of recesses of the metal tube.
    Type: Application
    Filed: December 8, 2017
    Publication date: December 19, 2019
    Inventors: Toshiaki KUSUNOKI, Keigo KASUYA, Takashi OHSHIMA, Tomihiro HASHIZUME, Noriaki ARAI, Yoichi OSE
  • Patent number: 10460862
    Abstract: An object of the invention is to provide: an MgB2 superconducting thin-film wire that exhibits excellent Jc characteristics even under a 20 K magnetic field; and a method for producing thereof. The MgB2 superconducting thin-film wire includes a long substrate and an MgB2 thin film formed on the long substrate. The MgB2 thin film has a microtexture such that MgB2 columnar crystal grains stand densely together on the surface of the long substrate, and has Tc of 30 K or higher. In grain boundary regions of the MgB2 columnar crystal grains, a predetermined transition metal element is dispersed and segregated. The predetermined transition metal element is an element having a body-centered cubic lattice structure.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: October 29, 2019
    Assignee: HITACHI, LTD.
    Inventors: Toshiya Doi, Shigeru Horii, Toshiaki Kusunoki
  • Publication number: 20190237289
    Abstract: An electron beam apparatus which can stably achieve high spatial resolution also during low acceleration observation using CeB6 for the CFE electron source is provided. In an electron beam apparatus having a CFE electron source, the emitter of the electron beam of the CFE electron source is Ce hexaboride or a hexaboride of a lanthanoid metal heavier than Ce, the hexaboride emits the electron beam from the {310} plane, and the number of the atoms of the lanthanoid metal on the {310} plane is larger than the number of boron molecules comprising six boron atoms on the {310} plane.
    Type: Application
    Filed: October 13, 2016
    Publication date: August 1, 2019
    Inventors: Keigo KASUYA, Noriaki ARAI, Toshiaki KUSUNOKI, Takashi OHSHIMA, Tomihiro HASHIZUME, Yusuke SAKAI
  • Publication number: 20190066966
    Abstract: In order to provide a stable hexaboride single-crystal field emission electron source capable of heat-flashing, this field emission electron source is provided with a metal filament, a metal tube joined thereto, a hexaboride tip that emits electrons, and graphite sheets that are independent of the metal tube and the hexaboride tip. The hexaboride tip is arranged so as not to be in structural contact with the metal tube due to the graphite sheets. The hexaboride tip, the graphite sheets, and the metal tube are configured so as to be mechanically and electrically in contact with one another.
    Type: Application
    Filed: November 24, 2016
    Publication date: February 28, 2019
    Inventors: Toshiaki KUSUNOKI, Tomihiro HASHIZUME, Keigo KASUYA, Takashi OHSHIMA, Yusuke SAKAI, Yoichi OSE, Noriaki ARAI
  • Publication number: 20180069165
    Abstract: A method of manufacturing an MgB2 thin film wire having an optimum average grain size is done by providing an optimum average grain size range to increase a pinning force and improve Jc with respect to the MgB2 thin film wire. In this method, the MgB2 thin film wire is made of an aggregate of MgB2 grains having a columnar structure which alignment is controlled to be in a direction perpendicular to a surface, a ratio of MgB2 to a total volume of the thin film wire is 90% or more, an average grain size of the grains is 30 nm or more and 200 nm or less by forming the MgB2 thin film having a film thickness of 1000 nm or more and 10000 nm or less in the lateral direction, and the average grain size of the grains is 40 nm or more and 100 nm or less.
    Type: Application
    Filed: February 20, 2015
    Publication date: March 8, 2018
    Applicant: HITACHI, LTD.
    Inventors: Ryoko SUGANO, Toshiaki KUSUNOKI, Hiroyuki YAMAMOTO
  • Publication number: 20170301444
    Abstract: An object of the invention is to provide: an MgB2 superconducting thin-film wire that exhibits excellent Jc characteristics even under a 20 K magnetic field; and a method for producing thereof. The MgB2 superconducting thin-film wire includes a long substrate and an MgB2 thin film formed on the long substrate. The MgB2 thin film has a microtexture such that MgB2 columnar crystal grains stand densely together on the surface of the long substrate, and has Tc of 30 K or higher. In grain boundary regions of the MgB2 columnar crystal grains, a predetermined transition metal element is dispersed and segregated. The predetermined transition metal element is an element having a body-centered cubic lattice structure.
    Type: Application
    Filed: October 16, 2015
    Publication date: October 19, 2017
    Applicant: HITACHI, LTD.
    Inventors: Toshiya DOI, Shigeru HORII, Toshiaki KUSUNOKI
  • Publication number: 20170278608
    Abstract: Provided is a high-performance persistent current switch that is provided with a superconducting coil in which a decrease of a critical current or a critical magnetic field is suppressed. A means for solving the problem is as follows. A persistent current switch provided with a superconducting coil in a switch unit. A superconducting coil 5 includes a winding portion 53 which is formed using a superconductor thin film formed on an outer circumferential face of a base member 50. The winding portion 53 includes a first winding portion 51 and a second winding portion 52 which are formed in a double helical shape to be parallel to each other. A terminating end portion 51b of the first winding portion 51 and a starting end portion 52a of the second winding portion 52, which are adjacent to each other, are connected to each other.
    Type: Application
    Filed: March 27, 2015
    Publication date: September 28, 2017
    Applicant: HITACHI, LTD.
    Inventors: Toshiaki KUSUNOKI, Hideki TANAKA, Motomune KODAMA, Hiroyuki YAMAMOTO
  • Patent number: 8803423
    Abstract: To obtain effective luminance and light efficiency while avoiding discharge, it is necessary to sufficiently increase a current luminous efficiency of gas and an electron emission efficiency of an electron source. In a fluorescent lamp, an anode electric field is increased by setting a pressure of a noble gas or a molecular gas enclosed to 10 kPa or higher, setting an anode voltage to 240 V or lower, and setting a substrate distance to 0.4 mm or smaller. Furthermore, the resulting effect that the current luminous efficiency is increased in proportion to the electric field is used. Also, by applying a MIM electron source having an electron emission efficiency exceeding 10% as an electron source, a non-discharge fluorescent lamp having a light emission luminance equal to or larger than 104 [cd/m2] and a light emission efficiency equal to or larger than 120 [lm/W] is achieved.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: August 12, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Masakazu Sagawa, Shin Imamura, Toshiaki Kusunoki
  • Patent number: 8633950
    Abstract: An image display device for special uses which improves a color resolution of a particular color and increases a color reproducibility is provided. In the image display device, an area in which a gradient is gentle is provided to a partial region of a gamma curve denoted by a relationship of an input value (gray level) and an output value (luminance relative value) so that chromaticity points on chromaticity coordinates are unevenly distributed, thereby improving a chromatic resolving power (color resolution) of a particular color. In this manner, the color reproducibility of special monitors which display images of a particular color range represented by a monitor for remote metical care and a monitor for surgical operation can be improved.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: January 21, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Kenji Okishiro, Toshiaki Kusunoki, Kenichi Yamamoto