Patents by Inventor Toshiaki Okuno

Toshiaki Okuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9281107
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture is prepared by mixing the magnet powder and a binder made of long-chain hydrocarbon and/or of a polymer or a copolymer consisting of monomers having no oxygen atoms. Next, the mixture is formed into a sheet-like shape so as to obtain a green sheet. After that, the green sheet is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to remove the binder by causing depolymerization reaction or the like to the binder, which turns into monomer. The green sheet from which the binder has been removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 8, 2016
    Assignee: NITTO DENKO CORPORATION
    Inventors: Keisuke Taihaku, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Takashi Ozaki
  • Patent number: 9136232
    Abstract: A method for bonding wafers includes forming a first bonding part on a surface of a first wafer by stacking a diffusion preventing layer formed of a material having low wettability with AuSn above the first wafer and forming a bonding layer on a surface of the diffusion preventing layer such that the bonding layer stays back of an edge of the diffusion preventing layer, forming a second bonding part on a surface of a second wafer, and bonding the first bonding part and the second bonding part by eutectic bonding with an AuSn solder under a condition that the first wafer and the second wafer are opposed to each other.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 15, 2015
    Assignee: OMRON Corporation
    Inventors: Takeshi Fujiwara, Toshiaki Okuno, Katsuyuki Inoue, Junya Yamamoto, Kenichi Hinuma, Yoshiki Ashihara, Takaaki Miyaji
  • Publication number: 20150084727
    Abstract: There are provided a rare-earth permanent magnet, and a method for manufacturing a rare-earth permanent magnet and a system for manufacturing a rare-earth permanent magnet, capable of achieving improved shape uniformity. Magnet material is milled into magnet powder, and the milled magnet powder is formed into a formed body 40. The formed body 40 is calcined and then sintered using a spark plasma sintering apparatus 45, so that a permanent magnet 1 is manufactured. A die unit 46 included in the spark plasma sintering apparatus 45 that performs spark plasma sintering at least includes in one direction an inflow hole 50 configured to receive inflow of part of the pressurized formed body.
    Type: Application
    Filed: March 8, 2013
    Publication date: March 26, 2015
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Toshiaki Okuno, Tomohiro Omure, Takashi Ozaki, Keisuke Taihaku, Takashi Yamamoto
  • Patent number: 8975736
    Abstract: A wafer level package has a first wafer having a plurality of chips mounted or formed thereon in a plane, and a second wafer that is opposed to the first wafer. The first wafer and the second wafer are joined while a seal frame that seals a periphery of each chip is interposed therebetween. A gap is formed between the seal frames of the chips adjacent to each other. A partial connect part that partially connects the seal frames to each other is provided in the gap formed between the seal frames of the chips adjacent to each other.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: March 10, 2015
    Assignee: OMRON Corporation
    Inventors: Toshiaki Okuno, Katsuyuki Inoue, Takeshi Fujiwara, Tomonori Seki
  • Publication number: 20140339710
    Abstract: A method for bonding wafers includes forming a first bonding part on a surface of a first wafer by stacking a diffusion preventing layer formed of a material having low wettability with AuSn above the first wafer and forming a bonding layer on a surface of the diffusion preventing layer such that the bonding layer stays back of an edge of the diffusion preventing layer, forming a second bonding part on a surface of a second wafer, and bonding the first bonding part and the second bonding part by eutectic bonding with an AuSn solder under a condition that the first wafer and the second wafer are opposed to each other.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 20, 2014
    Inventors: Takeshi Fujiwara, Toshiaki Okuno, Katsuyuki Inoue, Junya Yamamoto, Kenichi Hinuma, Yoshiki Ashihara, Takaaki Miyaji
  • Publication number: 20140301885
    Abstract: In a permanent magnet and a manufacturing method thereof, entire magnet can be densely sintered without a gap between a main phase and a grain boundary phase. Fine powder of milled neodymium magnet is mixed with a solution containing an organometallic compound expressed with a structural formula, M-(OR)X, wherein M represents Cu, Al, Dy, Tb, V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, and X represents an arbitrary integer, to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. The magnet powder is desiccated and then held for several hours in hydrogen atmosphere at a pressure higher than normal atmospheric pressure, at 200-900 degrees Celsius for calcination process in hydrogen. The calcined powder after calcination process in hydrogen is held for several hours in vacuum at 200-600 degrees Celsius for dehydrogenation process.
    Type: Application
    Filed: September 25, 2012
    Publication date: October 9, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Keisuke Taihaku, Takashi Ozaki, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Takashi Yamamoto
  • Publication number: 20140241930
    Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling, even when wet milling is employed, carbon content contained in magnet particles to be reduced in advance before sintering, and also enabling the entirety of the magnet to be densely sintered without causing a gap between a main phase and a grain boundary phase in the sintered magnet. Coarsely-milled magnet powder is further milled by a bead mill in an organic solvent. Thereafter, the magnet powder is compacted to produce a formed body. Hydrogen calcination process is performed through holding the formed body for several hours in hydrogen atmosphere at a pressure higher than normal atmospheric pressure at 200 through 900 degrees Celsius. Thereafter, through sintering process, a permanent magnet 1 is manufactured.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 28, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Tomohiro Omure, Takashi Ozaki, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Keisuke Taihaku, Takashi Yamamoto
  • Publication number: 20140241929
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method of the rare-earth permanent magnet with improved magnetic performance which is achieved through milling-ability-improved fine wet-milling step. In the method, coarsely milled magnet material is finely wet-milled in an organic solvent together with an organometallic compound expressed with a structural formula of M-(OR)x (M including at least one of Nd, Al, Cu, Ag, Dy, Tb, V, Mo, Zr, Ta, Ti, W, and Nb, R representing a substituent group consisting of a straight-chain or branched-chain hydrocarbon with carbon chain length of 2-16, and x representing an arbitrary integer) to obtain magnet powder and to make the organometallic compound adhere to particle surfaces of the magnet powder. Subsequently, the magnet powder having adhesion of the organometallic compound to particle surfaces thereof is formed into a formed body and sintered so as to obtain a permanent magnet 1.
    Type: Application
    Filed: September 25, 2012
    Publication date: August 28, 2014
    Inventors: Takashi Ozaki, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Keisuke Taihaku, Takashi Yamamoto
  • Publication number: 20140210582
    Abstract: There are provided a rare-earth permanent magnet based on Nd—Fe—B, capable of improving coercive force through reducing a residual nitrogen concentration after sintering to be 800 ppm or lower, and a manufacturing method of the rare-earth permanent magnet. The rare-earth permanent magnet based on Nd—Fe—B is obtained through milling a magnet material in an atmosphere of a noble gas by dry milling, and thereafter, compacting the milled magnet material into a formed body in an atmosphere of a noble gas. The formed body is then sintered at 800 through 1180 degrees Celsius so as to obtain a permanent magnet 1 whose nitrogen concentration is 800 ppm or lower, or more preferably 300 ppm or lower.
    Type: Application
    Filed: October 1, 2012
    Publication date: July 31, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Toshiaki Okuno, Tomohiro Omure, Takashi Ozaki, Keisuke Taihaku, Takashi Yamamoto
  • Publication number: 20140197911
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method of a rare-earth permanent magnet capable of improving magnetic properties by optimizing magnetic field orientation. In the method, magnet material is milled into magnet powder. Next, the magnet powder and a binder are mixed to obtain a mixture 12. The thus prepared mixture 12 is then formed into a long-sheet-like shape on a supporting base 13 by hot-melt molding so as to obtain a green sheet 14. The thus formed green sheet 14 is heated to soften and a magnetic field is applied to the heated green sheet 14 for magnetic field orientation. The green sheet 14 subjected to the magnetic field orientation is sintered and thereby a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 17, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takashi Ozaki, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Keisuke Taihaku, Takashi Yamamoto
  • Publication number: 20140152408
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method of a rare-earth permanent magnet capable of improving magnetic properties with drastically enhanced manufacturing efficiency. In the method, magnet material is milled into magnet powder. Next, the magnet powder and a binder are mixed to obtain a mixture 12. Next, the thus prepared mixture 12 is formed into a long-sheet-like shape on a supporting base 13 by hot-melt molding so as to obtain a green sheet 14. The thus formed green sheet 14 is heated to soften and a magnetic field is applied to multiple layers of the heated green sheet 14 for magnetic field orientation. The green sheet 14 subjected to the magnetic field orientation is sintered and thereby a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 8, 2013
    Publication date: June 5, 2014
    Inventors: Tomohiro Omure, Katsuya kume, Toshiaki Okuno, Izumi Ozeki, Takashi Ozaki, Keisuke Taihaku, Takashi Yamamoto
  • Publication number: 20140145808
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method of a rare-earth permanent magnet capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture 12 is prepared by mixing the magnet powder and a binder, and the mixture 12 is formed into a sheet-like shape to obtain a green sheet 14. Thereafter, magnetic field orientation is performed to the green sheet 14, which is then held for several hours in a non-oxidizing atmosphere at a pressure higher than normal atmospheric pressure, at 200 through 900 degrees Celsius for calcination. Thereafter, the calcined green sheet 14 is sintered at a sintering temperature. Thereby a permanent magnet 1 is manufactured.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 29, 2014
    Applicant: NITTO Denko Corporation
    Inventors: Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Takashi Ozaki, Keisuke Taihaku, Takashi Yamamoto
  • Patent number: 8696216
    Abstract: An optical module has a support board, an optical transmission path, and at least a single optical element having a light receiving function or a light emitting function provided on the support board. A light emission surface of the optical transmission path or a light incidence surface of the optical transmission path is arranged such that the optical element and the optical transmission path are optically coupled to each other, with respect to a light receiving surface or a light emitting surface of the optical element. The optical element is sealed by a sealing agent. A gap is provided between the optical transmission path and the surface of the sealing agent on the light receiving surface or the light emitting surface of the optical element.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: April 15, 2014
    Assignee: OMRON Corporation
    Inventors: Akihiko Sano, Hiroto Nozawa, Toshiaki Okuno, Junichi Tanaka, Naru Yasuda, Hayami Hosokawa
  • Publication number: 20140008779
    Abstract: A wafer level package has a first wafer having a plurality of chips mounted or formed thereon in a plane, and a second wafer that is opposed to the first wafer. The first wafer and the second wafer are joined while a seal frame that seals a periphery of each chip is interposed therebetween. A gap is formed between the seal frames of the chips adjacent to each other. A partial connect part that partially connects the seal frames to each other is provided in the gap formed between the seal frames of the chips adjacent to each other.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 9, 2014
    Applicant: OMRON CORPORATION
    Inventors: Toshiaki Okuno, Katsuyuki Inoue, Takeshi Fujiwara, Tomonori Seki
  • Publication number: 20130285778
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture is prepared by mixing the magnet powder and a binder made of long-chain hydrocarbon and/or of a polymer or a copolymer consisting of monomers having no oxygen atoms. Next, the mixture is formed into a sheet-like shape so as to obtain a green sheet. After that, the green sheet is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to remove the binder by causing depolymerization reaction or the like to the binder, which turns into monomer. The green sheet from which the binder has been removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 15, 2012
    Publication date: October 31, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Keisuke Taihaku, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Takashi Ozaki
  • Publication number: 20130141194
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of simplifying manufacturing process and improving productivity through advanced ability to produce net shapes. In the method, magnet material is milled into magnet powder, and the magnet powder and a binder are mixed to prepare a mixture. Next, the prepared mixture is formed into a green sheet. Thereafter, the green sheet is held for predetermined time at binder decomposition temperature in non-oxidizing atmosphere, whereby depolymerization reaction or the like changes the binder into monomer and thus removes the binder. The green sheet with the binder removed therefrom undergoes pressure sintering such as SPS method so as to obtain a rare-earth permanent magnet 1.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 6, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Toshiaki Okuno, Tomohiro Omure, Takashi Ozaki, Keisuke Taihaku
  • Publication number: 20130141195
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder. Next, a mixture is prepared by mixing the magnet powder and a binder made of a fatty acid methyl ester and/or one of or a blend of polymers and copolymers each composed of monomers satisfying a given condition. Next, the mixture is formed into a sheet-like shape to obtain a green sheet. After that, the green sheet is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to remove the binder by causing depolymerization reaction or the like to the binder, which turns into monomer. The green sheet from which the binder has been removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 6, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Keisuke Taihaku, Katsuya Kume, Izumi Ozeki, Toshiaki Okuno, Tomohiro Omure, Takashi Ozaki
  • Publication number: 20130141197
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method of the rare-earth permanent magnet capable of preventing deterioration of magnet properties. In the method, magnet material is milled into magnet powder, and the magnet powder is mixed with a binder made of a hydrocarbon to prepare slurry 12, and one or more kinds of organic solvents selected from a group of organic compounds consisting of hydrocarbons. Next, the slurry 12 is formed into a sheet-like shape to obtain a green sheet 13. After that, the green sheet 13 is held for a predetermined length of time at binder decomposition temperature in a non-oxidizing atmosphere so as to cause depolymerization reaction or the like to the binder, which turns into monomer and is removed. The green sheet 13 with the binder removed is sintered by raising temperature up to sintering temperature. Thereby a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 6, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takashi Ozaki, Katsuya Kume, Toshiaki Okuno, Izumi Ozeki, Tomohiro Omure, Keisuke Taihaku
  • Publication number: 20130141196
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of achieving improvement of magnetic properties by optimizing magnetic field orientation. In the method, magnet material is milled into magnet powder. Next, the magnet powder and a binder are mixed to obtain a mixture. Next, the thus prepared mixture is formed into long-sheet-like shape so as to obtain a green sheet 13. Before the thus formed green sheet 13 dries, magnetic field is applied in an in-plane and transverse direction or an in-plane and machine direction of the green sheet for magnetic field orientation. Thereby, a permanent magnet 1 is obtained.
    Type: Application
    Filed: March 15, 2012
    Publication date: June 6, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Toshiaki Okuno, Takashi Ozaki, Tomohiro Omure, Keisuke Taihaku
  • Publication number: 20130135070
    Abstract: There are provided a rare-earth permanent magnet and a manufacturing method thereof capable of boosting productivity by improving thickness accuracy of a green sheet. In the method, magnet material is milled into magnet powder, and the magnet powder and a binder are mixed to obtain a mixture including 1 to 40 wt % of the binder therein. Next, by high precision coating of a substrate with the mixture, a green sheet is obtained at thickness precision within a margin of error of plus or minus 5% with reference to a designed value. Thereafter, the green sheet is held for predetermined time at binder decomposition temperature in non-oxidizing atmosphere, whereby depolymerization reaction or the like changes the binder into monomer and thus removes the binder. The green sheet with the binder removed therefrom undergoes pressure sintering such as SPS method so as to obtain a permanent magnet 1.
    Type: Application
    Filed: March 15, 2012
    Publication date: May 30, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Izumi Ozeki, Katsuya Kume, Toshiaki Okuno, Takashi Ozaki, Tomohiro Omure, Keisuke Taihaku