Patents by Inventor Toshiharu NAGUMO

Toshiharu NAGUMO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150372080
    Abstract: A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Murat Kerem Akarvardar, Steven John Bentley, Kangguo Cheng, Bruce B. Doris, Jody Fronheiser, Ajey Poovannummoottil Jacob, Ali Khakifirooz, Toshiharu Nagumo
  • Patent number: 9196715
    Abstract: A semiconductor device includes a channel structure formed on a substrate, the channel structure being formed of a semiconductor material. A gate structure covers at least a portion of the surface of the channel structure and is formed of a film of insulation material and a gate electrode. A source structure is connected to one end of the channel structure, and a drain structure is connected to the other end of the channel structure. The channel structure has a non-uniform composition, in a cross-sectional view, that provides a reduction of a leakage current of the semiconductor device relative to a leakage current that would result from a uniform composition.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 24, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Tomohiro Hirai, Shogo Mochizuki, Toshiharu Nagumo
  • Patent number: 9190411
    Abstract: Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 17, 2015
    Assignee: GlobalFoundries Inc.
    Inventors: Ajey Poovannummoottil Jacob, Steven John Bentley, Murat Kerem Akarvardar, Jody Alan Fronheiser, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Toshiharu Nagumo
  • Patent number: 9190505
    Abstract: A semiconductor device includes a substrate and a source structure and a drain structure formed on the substrate. At least one nanowire structure interconnects the source structure and drain structure and serves as a channel therebetween. A gate structure is formed over said at least one nanowire structure to provide a control of a conductivity of carriers in the channel, and the nanowire structure includes a center core serving as a backbias electrode for the channel.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: November 17, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Tomohiro Hirai, Toshiharu Nagumo
  • Publication number: 20150140761
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 21, 2015
    Applicants: GLOBALFOUNDRIES INC., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey Poovannummoottil Jacob, Murat Kerem Akarvardar, Steven Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20150137308
    Abstract: A method of forming a semiconductor structure includes forming a first isolation region between fins of a first group of fins and between fins of a second group of fins. The first a second group of fins are formed in a bulk semiconductor substrate. A second isolation region is formed between the first group of fins and the second group of fins, the second isolation region extends through a portion of the first isolation region such that the first and second isolation regions are in direct contact and a height above the bulk semiconductor substrate of the second isolation region is greater than a height above the bulk semiconductor substrate of the first isolation region.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicants: International Business Machines Corporation, Renesas Electronics Corporation, GLOBALFOUNDRIES Inc.
    Inventors: Murat Kerem Akarvardar, Steven John Bentley, Kangguo Cheng, Bruce B. Doris, Jody Fronheiser, Ajey Poovannummoottil Jacob, Ali Khakifirooz, Toshiharu Nagumo
  • Publication number: 20150060875
    Abstract: To realize a transistor of normally-off type having a high mobility and a high breakdown voltage. A compound semiconductor layer is formed over a substrate, has both a concentration of p-type impurities and a concentration of n-type impurities less than 1×1016/cm3, and includes a group III nitride compound. A well is a p-type impurity layer and formed in the compound semiconductor layer. A source region is formed within the well and is an n-type impurity layer. A low-concentration n-type region is formed in the compound semiconductor layer and is linked to the well. A drain region is formed in the compound semiconductor layer and is located on a side opposite to the well via the low-concentration n-type region. The drain region is an n-type impurity layer.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 5, 2015
    Inventors: Ippei Kume, Hiroshi Takeda, Toshiharu Nagumo, Takashi Hase
  • Patent number: 8963259
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 24, 2015
    Assignees: GlobalFoundries Inc., International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Ajey P. Jacob, Murat K. Akarvardar, Steven J. Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20140361377
    Abstract: Embodiments herein provide device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of high mobility channel fins is formed over the retrograde doped layer, each of the set of high mobility channel fins comprising a high mobility channel material (e.g., silicon or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of high mobility channel fins to prevent carrier spill-out to the high mobility channel fins.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Ajey Poovannummoottil Jacob, Steven John Bentley, Murat Kerem Akarvardar, Jody Alan Fronheiser, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Toshiharu Nagumo
  • Publication number: 20140353801
    Abstract: Embodiments herein provide approaches for device isolation in a complimentary metal-oxide fin field effect transistor. Specifically, a semiconductor device is formed with a retrograde doped layer over a substrate to minimize a source to drain punch-through leakage. A set of replacement fins is formed over the retrograde doped layer, each of the set of replacement fins comprising a high mobility channel material (e.g., silicon, or silicon-germanium). The retrograde doped layer may be formed using an in situ doping process or a counter dopant retrograde implant. The device may further include a carbon liner positioned between the retrograde doped layer and the set of replacement fins to prevent carrier spill-out to the replacement fins.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Ajey P. Jacob, Murat K. Akarvardar, Steven J. Bentley, Toshiharu Nagumo, Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz
  • Publication number: 20140252483
    Abstract: A semiconductor device and method making it comprises pFETs with an SiGe channel and nFETs with an Si channel, formed on an SOI substrate. Improved uniformity of fin height and width is attained by forming the fins additively by depositing an SiGe layer on the SOI substrate and forming first fins from the superposed SiGe layer and underlying thin Si film of the SOI substrate. Second fins of Si can then be formed by replacing the upper SiGe portions of selected first fins with Si.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 11, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Toshiharu NAGUMO
  • Publication number: 20140239399
    Abstract: A semiconductor device and method making it utilize a three-dimensional channel region comprising a core of a first semiconductor material and an epitaxial covering of a second semiconductor material. The first and second semiconductor materials have respectively different lattice constants, thereby to create a strain in the epitaxial covering. The devices are formed by a gate-last process, so that the second semiconductor material is deposited only after the high temperature processes have been performed. Consequently, the lattice strain is not substantially relaxed, and the improved performance benefits of the lattice strained channel region are not compromised.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 28, 2014
    Applicant: Renesas Electronics Corporation
    Inventor: Toshiharu NAGUMO
  • Publication number: 20140183452
    Abstract: A semiconductor device includes a substrate and a source structure and a drain structure formed on the substrate. At least one nanowire structure interconnects the source structure and drain structure and serves as a channel therebetween. A gate structure is formed over said at least one nanowire structure to provide a control of a conductivity of carriers in the channel, and the nanowire structure includes a center core serving as a backbias electrode for the channel.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Tomohiro HIRAI, Toshiharu NAGUMO
  • Publication number: 20140183451
    Abstract: A semiconductor device includes a channel structure formed on a substrate, the channel structure being formed of a semiconductor material. A gate structure covers at least a portion of the surface of the channel structure and is formed of a film of insulation material and a gate electrode. A source structure is connected to one end of the channel structure, and a drain structure is connected to the other end of the channel structure.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Tomohiro HIRAI, Shogo Mochizuki, Toshiharu Nagumo
  • Publication number: 20120313172
    Abstract: This invention is to provide a semiconductor device having a reduced variation in the transistor characteristics. The semiconductor device has a SOI substrate, a first element isolation insulating layer, first and second conductivity type transistors, and first and second back gate contacts. The SOI substrate has a semiconductor substrate having first and second conductivity type layers, an insulating layer, and a semiconductor layer. The first element isolation insulating layer is buried in the SOI substrate, has a lower end reaching the first conductivity type layer, and isolates a first element region from a second element region. The first and second conductivity type transistors are located in the first and second element regions, respectively, and have respective channel regions formed in the semiconductor layer. The first and second back gate contacts are coupled to the second conductivity type layers in the first and second element regions, respectively.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 13, 2012
    Inventors: Masaharu MATSUDAIRA, Toshiharu Nagumo, Hiroshi Takeda, Kiyoshi Takeuchi
  • Publication number: 20120065920
    Abstract: An evaluation method of a semiconductor device according to an aspect of the present invention includes MISFETs including a gate insulating film, the evaluation method including measuring an RTN of a plurality of MISFETs, and extracting at least two parameters selected from a position of a trap in the gate insulating film, an energy of the trap, an RTN time constant, and an RTN amplitude based on a measurement result of the RTN, and obtaining a correlation between these at least two parameters.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 15, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Toshiharu NAGUMO, Kiyoshi TAKEUCHI