Patents by Inventor Toshihide Koda

Toshihide Koda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9885357
    Abstract: A hermetic compressor includes a hermetic container having a bottom portion in which lubricating oil is stored and an electric motor including a stator and a rotator. The hermetic compressor further includes a drive shaft attached to the rotator and a compression mechanism for compressing refrigerant by using rotation of the drive shaft. The hermetic compressor also includes a rotary pressure increasing mechanism for increasing a pressure of refrigerant gas, the rotary pressure increasing mechanism being arranged on the rotator, and a cylindrical lateral wall for partitioning a space above the electric motor into an outer space and an inner space in a manner that the a cylindrical lateral wall surrounds the rotary pressure increasing mechanism. Finally, the hermetic compressor includes a discharge pipe for allowing the refrigerant to flow out from the inner space into an external circuit that is external to the hermetic container.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 6, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Teruhiko Nishiki, Shogo Moroe, Taro Kato, Keisuke Shingu, Shin Sekiya, Toshihide Koda
  • Patent number: 9726409
    Abstract: An air-conditioning apparatus includes a controller which calculates a composition ratio of a refrigerant mixture using a high-pressure-side pressure of a refrigerant discharged from a compressor, a low-pressure-side pressure of a refrigerant to be sucked into the compressor, a high-pressure-side temperature of a refrigerant at an inlet side of a second expansion device in a high/low pressure bypass pipe, and a low-pressure-side temperature of a refrigerant at an outlet side of the second expansion device in the high/low pressure bypass pipe and which determines whether to open or close a bypass-channel opening/closing device.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 8, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Yamashita, Toshihide Koda, Hiroyuki Morimoto
  • Publication number: 20170089624
    Abstract: A hermetic compressor, includes: a hermetic container storing a lubricating oil; an electric motor; a drive shaft; a compression mechanism; a rotary pressure increasing mechanism increasing pressure of refrigerant gas; a cylindrical lateral wall partitioning a space above the electric motor into outer and inner spaces; and a discharge pipe allowing refrigerant to flow out from the inner space into an external circuit. The refrigerant gas discharged from the compression mechanism into the hermetic container is moved from a space below the electric motor up to an upper end of the rotator through rotator vents of the rotator, flows into the rotary pressure increasing mechanism to be increased in pressure, flows into the inner space to increase a pressure in the inner space, and is discharged to an outside through the discharge pipe while suppressing inflow of the refrigerant gas from the outer space to the inner space.
    Type: Application
    Filed: March 19, 2014
    Publication date: March 30, 2017
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tetsuhide YOKOYAMA, Teruhiko NISHIKI, Shogo MOROE, Taro KATO, Keisuke SHINGU (Deceased), Shin SEKIYA, Toshihide KODA
  • Publication number: 20150354572
    Abstract: A hermetic compressor, includes a hermetic container having a bottom portion in which lubricating oil is stored; an electric motor including a stator and a rotator; a drive shaft attached to the rotator; a compression mechanism for compressing refrigerant by using rotation of the drive shaft; a rotary pressure increasing mechanism for increasing a pressure of refrigerant gas, the rotary pressure increasing mechanism being arranged on the rotator; a cylindrical lateral wall for partitioning a space above the electric motor into an outer space and an inner space in a manner that the a cylindrical lateral wall surrounds the rotary pressure increasing mechanism; and a discharge pipe for allowing the refrigerant to flow out from the inner space into an external circuit that is external to the hermetic container.
    Type: Application
    Filed: January 16, 2013
    Publication date: December 10, 2015
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tetsuhide YOKOYAMA, Teruhiko NISHIKI, Shogo MOROE, Taro KATO, Keisuke SHINGU, Shin SEKIYA, Toshihide KODA
  • Patent number: 8790097
    Abstract: A refrigerant compressor that enhances compressor efficiency by both reducing an amplitude of pressure pulsations and reducing pressure losses in a discharge muffler space into which is discharged a refrigerant compressed at a compression unit. A low-stage discharge muffler space is formed in the shape of a ring around a drive shaft. In the low-stage discharge muffler space, a discharge port rear guide is provided in the proximity of a discharge port through which is discharged the refrigerant compressed by a low-stage compression unit. The discharge port rear guide is provided at a flow path in one direction out of two flow paths from the discharge port to a communication port in different directions around the drive shaft, and prevents the refrigerant from flowing in that direction, thereby causing the refrigerant to circulate in a forward direction in the ring-shaped discharge muffler space.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 29, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Shin Sekiya, Kei Sasaki, Raito Kawamura, Taro Kato, Atsuyoshi Fukaya, Takeshi Fushiki, Hideaki Maeyama, Masao Tani
  • Patent number: 8753098
    Abstract: A refrigerant compressor includes: an electric motor including a stator and rotor inside a sealed vessel; a compressing mechanism driven by a crank shaft in the rotor; a lower portion oil pool storing in the sealed vessel lubricating oil that lubricates the compressing mechanism; an upper counterweight on an upper end of the rotor. Refrigerant gas compressed by the compressing mechanism is discharged inside the sealed vessel, passes through a gas channel formed on the electric motor, moves from a lower space to an upper space with respect to the electric motor, and is discharged outside the sealed vessel. An oil return flow channel is formed on the upper end of the rotor toward a lower end from a vicinity of a leading end portion of the upper counterweight in a direction of rotation, and oil expressed in a vicinity of the rotor is directed to the oil return flow channel.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: June 17, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Teruhiko Nishiki, Hideaki Maeyama, Taro Kato, Keisuke Shingu, Takuho Hirahara, Shin Sekiya
  • Publication number: 20140090409
    Abstract: An air-conditioning apparatus includes a controller which calculates a composition ratio of a refrigerant mixture using a high-pressure-side pressure of a refrigerant discharged from a compressor, a low-pressure-side pressure of a refrigerant to be sucked into the compressor, a high-pressure-side temperature of a refrigerant at an inlet side of a second expansion device in a high/low pressure bypass pipe, and a low-pressure-side temperature of a refrigerant at an outlet side of the second expansion device in the high/low pressure bypass pipe and which determines whether to open or close a bypass-channel opening/closing device.
    Type: Application
    Filed: June 14, 2011
    Publication date: April 3, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji Yamashita, Toshihide Koda, Hiroyuki Morimoto
  • Patent number: 8511112
    Abstract: A refrigeration cycle apparatus which is capable of performing matching of the volumetric flow rate without performing pre-expansion it obtained. A refrigeration circuit includes a compression unit including a main compressor and a second compressor, a gas cooler, an expansion mechanism, and an evaporator interconnected with pipes, and a sub-compression mechanism driven by power recovered by the expansion mechanism, a suction side of the sub-compression mechanism is connected to a compression process of the compression unit, a discharge side of the sub-compression mechanism is connected to an inlet side of the gas cooler, and flow rate of refrigerant flowing into the sub-compression mechanism is controlled.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Naofumi Takenaka, Takashi Okazaki, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Patent number: 8475149
    Abstract: A scroll fluid machine that suppresses fluctuations in a port aperture area during each revolution of an orbiting scroll. Suction ports for sucking in a working fluid are disposed on a second base plate to have openings in a vicinity of a winding start end portion of a second spiral tooth, and near an inward facing surface of the second spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the second spiral tooth. Discharge ports for discharging the working fluid are disposed on a first base plate to have openings in a vicinity of a winding start end portion of a first spiral tooth, and near an inward facing surface of the first spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the first spiral tooth.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: July 2, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Publication number: 20120107151
    Abstract: A refrigerant compressor includes: an electric motor including a stator and rotor inside a sealed vessel; a compressing mechanism driven by a crank shaft in the rotor; a lower portion oil pool storing in the sealed vessel lubricating oil that lubricates the compressing mechanism; an upper counterweight on an upper end of the rotor. Refrigerant gas compressed by the compressing mechanism is discharged inside the sealed vessel, passes through a gas channel formed on the electric motor, moves from a lower space to an upper space with respect to the electric motor, and is discharged outside the sealed vessel. An oil return flow channel is formed on the upper end of the rotor toward a lower end from a vicinity of a leading end portion of the upper counterweight in a direction of rotation, and oil expressed in a vicinity of the rotor is directed to the oil return flow channel.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 3, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Teruhiko Nishiki, Hideaki Maeyama, Taro Kato, Keisuke Shingu, Takuho Hirahara, Shin Sekiya
  • Publication number: 20120085118
    Abstract: A refrigerant compressor that enhances compressor efficiency by both reducing an amplitude of pressure pulsations and reducing pressure losses in a discharge muffler space into which is discharged a refrigerant compressed at a compression unit. A low-stage discharge muffler space is formed in the shape of a ring around a drive shaft. In the low-stage discharge muffler space, a discharge port rear guide is provided in the proximity of a discharge port through which is discharged the refrigerant compressed by a low-stage compression unit. The discharge port rear guide is provided at a flow path in one direction out of two flow paths from the discharge port to a communication port in different directions around the drive shaft, and prevents the refrigerant from flowing in that direction, thereby causing the refrigerant to circulate in a forward direction in the ring-shaped discharge muffler space.
    Type: Application
    Filed: May 24, 2010
    Publication date: April 12, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Tetsuhide Yokoyama, Toshihide Koda, Shin Sekiya, Kei Sasaki, Raito Kawamura, Taro Kato, Atsuyoshi Fukaya, Takeshi Fushiki, Hideaki Maeyama, Masao Tani
  • Publication number: 20120060548
    Abstract: A refrigeration cycle apparatus which is capable of performing matching of the volumetric flow rate without performing pre-expansion it obtained. A refrigeration circuit includes a compression unit including a main compressor and a second compressor, a gas cooler, an expansion mechanism, and an evaporator interconnected with pipes, and a sub-compression mechanism driven by power recovered by the expansion mechanism, a suction side of the sub-compression mechanism is connected to a compression process of the compression unit, a discharge side of the sub-compression mechanism is connected to an inlet side of the gas cooler, and flow rate of refrigerant flowing into the sub-compression mechanism is controlled.
    Type: Application
    Filed: May 28, 2010
    Publication date: March 15, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Naofumi Takenaka, Takashi Okazaki, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Patent number: 8128388
    Abstract: A scroll-type expansion machine includes an expansion mechanism including an orbiting scroll and a first fixed scroll for expanding a refrigerant and recovering a power, a sub-expansion mechanism including an orbiting scroll and a second fixed scroll for compressing the refrigerant by the power recovered by the expansion mechanism, and a seal ring disposed in at least one of an outer circumference portion of the sub-compression mechanism or an outer circumference portion of the expansion mechanism. An oil flow path is opened in an upper space of a hermetic vessel to make the upper space and a lower space at a compressed pressure of the sub-compression mechanism, and the lower space is provided with an oil pipe for communicating with the main compressor.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: March 6, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Mihoko Shimoji, Masayuki Kakuda, Toshihide Koda, Shin Sekiya, Fumihiko Ishizono, Tomokazu Matsui
  • Patent number: 8109116
    Abstract: A refrigeration air conditioner includes a first equalizer pipe connecting a bottom portion of a first hermetic vessel, which contains a main compression mechanism and lubricating oil, to a bottom portion of a second hermetic vessel, which contains an expansion mechanism, a sub-compression mechanism, and lubricating oil. A second equalizer pipe connects a side of the second hermetic vessel at a position higher than a minimum oil level to a suction side of the main compression mechanism. The space within the second hermetic vessel is isolated from the expansion mechanism and the sub-compression mechanism, and the pressure within the second hermetic vessel is not dependent upon the pressure within the expansion mechanism and the pressure within the sub-compression mechanism.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: February 7, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shin Sekiya, Masayuki Kakuda, Toshihide Koda, Masahiro Sugihara
  • Publication number: 20110100042
    Abstract: A compressor for compressing a refrigerant containing a substance having a double bond, a condenser for condensing the refrigerant by heat exchange, expanding means for decompressing the condensed refrigerant, and an evaporator for evaporating the decompressed refrigerant by heat exchange are connected by piping so as to configure a refrigerant circuit through which the refrigerant is circulated, and control means is provided for controlling an operation of the refrigerant circuit so that a pressure of the refrigerant in the refrigerant circuit becomes less than a critical pressure of the substance having the double bond.
    Type: Application
    Filed: June 12, 2009
    Publication date: May 5, 2011
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji Yamashita, Atsuhiro Yabu, Toshihide Koda
  • Patent number: 7909592
    Abstract: A scroll compressor is provided which has favorable assembling property, does not require a thrust bearing, has a bearing structure for bearing a compression section at both sides thereof and has a simple structure of a scroll.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Yano, Toshiyuki Nakamura, Masaaki Sugawa, Kunio Tojo, Fumihiko Ishizono, Masayuki Kakuda, Shin Sekiya, Masahiro Sugihara, Toshihide Koda
  • Publication number: 20110027114
    Abstract: A scroll fluid machine that suppresses fluctuations in a port aperture area during each revolution of an orbiting scroll. Suction ports for sucking in a working fluid are disposed on a second base plate to have openings in a vicinity of a winding start end portion of a second spiral tooth, and near an inward facing surface of the second spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the second spiral tooth. Discharge ports for discharging the working fluid are disposed on a first base plate to have openings in a vicinity of a winding start end portion of a first spiral tooth, and near an inward facing surface of the first spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the first spiral tooth.
    Type: Application
    Filed: January 5, 2009
    Publication date: February 3, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Patent number: 7775783
    Abstract: A scroll expander that is efficient in a wide range of operating conditions by suppressing leakage loss and decreasing in recovered power using a simple construction includes: an expansion mechanism, including an orbiting scroll and a first fixed scroll, recovers power by expanding a refrigerant; and an auxiliary compression mechanism, including an orbiting scroll and a second fixed scroll, compresses a refrigerant using power recovered by the expansion mechanism. A tip seal is mounted only on a spiral tooth of an orbiting scroll and a fixed scroll of one of the expansion mechanism or the auxiliary compression mechanism.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: August 17, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Shin Sekiya, Toshihide Koda, Masahiro Sugihara
  • Patent number: 7766633
    Abstract: A scroll compressor includes a compression section having an orbiting scroll with volutes that are substantially symmetrically formed on both surfaces of an orbiting base plate. A main shaft penetrates through and is fixed to a center portion of the base plate. A pair of fixed scrolls is placed on both surfaces of the orbiting scroll, and has volutes which correspond to the respective volutes of the orbiting scroll to form compression chambers. The main shaft has a notch part which is formed at a portion penetrating through the orbiting scroll and fixed scrolls. A slider is provided which has an eccentric hole including a flat slide surface corresponding to the notch part. The slider is fitted to the main shaft where the notch part is formed. The slider is made slidable in a direction orthogonal to a length direction of the main shaft by the flat slide surface.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Toshiyuki Nakamura, Kenji Yano, Fumihiko Ishizono, Kunio Tojo, Masaaki Sugawa, Masahiro Sugihara, Masayuki Kakuda, Shin Sekiya, Toshihide Koda
  • Publication number: 20100014999
    Abstract: A scroll-type expansion machine includes an expansion mechanism including an orbiting scroll and a first fixed scroll for expanding a refrigerant and recovering a power, a sub-expansion mechanism including an orbiting scroll and a second fixed scroll for compressing the refrigerant by the power recovered by the expansion mechanism, and a seal ring disposed in at least one of an outer circumference portion of the sub-compression mechanism or an outer circumference portion of the expansion mechanism. An oil flow path is opened in an upper space of a hermetic vessel to make the upper space and a lower space at a compressed pressure of the sub-compression mechanism, and the lower space is provided with an oil pipe for communicating with the main compressor.
    Type: Application
    Filed: September 28, 2006
    Publication date: January 21, 2010
    Applicant: Mitsubishi Electric Corporation
    Inventors: Mihoko Shimoji, Masayuki Kakuda, Toshihide Koda, Shin Sekiya, Fumihiko Ishizono, Tomokazu Matsui