Patents by Inventor Toshihiro Maki

Toshihiro Maki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6329275
    Abstract: An interconnector line of thin film comprising 0.001 to 30 at % of at least one kind of a first element capable of constituting an intermetallic compound of aluminum and/or having a higher standard electrode potential than aluminum, for example, at least one kind of the first element selected from Y, Sc, La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Th, Sr, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Pd, Ir, Pt, Cu, Ag, Au, Cd, Si, Pb and B; and one kind of a second element selected from C, O, N and H in a proportion of 0.01 at ppm to 50 at % of the first element, with the balance comprising substantially Al. In addition to having low resistance, such an Al interconnector line of thin film can prevent the occurrence of hillocks and the electrochemical reaction with an ITO electrode. The interconnector line of thin film can be obtained by sputtering in a dust-free manner by using a sputter target having a similar composition.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: December 11, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Koichi Watanabe, Akihisa Nitta, Toshihiro Maki, Noriaki Yagi
  • Publication number: 20010037938
    Abstract: A refractory metal silicide target is characterized by comprising a fine mixed structure composed of MSi2 (where M: refractory metal) grains and Si grains, wherein the number of MSi2 grains independently existing in a cross section of 0.01 mm2 of the mixed structure is not greater than 15, the MSi2 grains have an average grain size not greater than 10 &mgr;m, whereas free Si grains existing in gaps of the MSi2 grains have a maximum grain size not greater than 20 &mgr;m. The target has a high density, high purity fine mixed structure with a uniform composition and contains a small amount of impurities such as oxygen etc. The employment of the target can reduce particles produced in sputtering, the change of a film resistance in a wafer and the impurities in a film and improve yield and reliability when semiconductors are manufactured.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 8, 2001
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Michio Sato, Takashi Yamanobe, Tohru Komatsu, Yoshiharu Fukasawa, Noriaki Yagi, Toshihiro Maki, Hiromi Shizu
  • Patent number: 6309593
    Abstract: A refractory metal silicide target is characterized by comprising a fine mixed structure composed of MSi2 (where M: refractory metal) grains and Si grains, wherein the number of MSi2 grains independently existing in a cross section of 0.01 mm2 of the mixed structure is not greater than 15, the MSi2 grains have an average grain size not greater than 10 &mgr;m, whereas free Si grains existing in gaps of the MSi2 grains have a maximum grain size not greater than 20 &mgr;m. The target has a high density, high purity fine mixed structure with a uniform composition and contains a small amount of impurities such as oxygen etc. The employment of the target can reduce particles produced in sputtering, the change of a film resistance in a wafer and the impurities in a film and improve yield and reliability when semiconductors are manufactured.
    Type: Grant
    Filed: March 20, 1995
    Date of Patent: October 30, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Sato, Takashi Yamanobe, Tohru Komatsu, Yoshiharu Fukasawa, Noriaki Yagi, Toshihiro Maki, Hiromi Shizu
  • Patent number: 6200694
    Abstract: A Mo—W material for the formation of wirings is discloses which, as viewed integrally, comprises 20 to 95% of tungsten and the balance of molybdenum and inevitable impurities by atomic percentage. The Mo—W material for wirings is a product obtained by compounding and integrating a Mo material and a W material as by the powder metallurgy technique or the smelting technique or a product obtained by arranging these materials in amounts calculated to account for the percentage composition mentioned above. The Mo—W material containing W in a proportion in the range of from 20 to 95% manifests low resistance and, at the same time, excels in workability and tolerance for etchants. The wiring thin film which is formed of the Mo—W alloy of this percentage composition is used as address wirings and others for liquid crystal display devices.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: March 13, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuo Kohsaka, Yoshiharu Fukasawa, Yoshiko Tsuji, Mitsushi Ikeda, Michio Sato, Toshihiro Maki
  • Patent number: 6113441
    Abstract: A method of determining whether a metal terminal including a conductor clamping section for clamping a wire thereto is satisfactorily connected to the wire or not, the method includes steps of: providing a first metal terminal including a first conductor clamping section for clamping a first wire thereto; calculating one of dimensional variation and a rate of a dimensional change of the first conductor clamping section in an axial direction of the first metal terminal are caused before and after clamping the first conductor clamping section; and preparing compressibility comparison data by calculating, from a section of the first conductor clamping section after clamping the first conductor clamping section, compressibility of the first wire with respect to the first conductor clamping section based on the one of the dimensional variation and the rate of the dimensional change.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: September 5, 2000
    Assignee: Yazaki Corporation
    Inventors: Yoshihiro Fukase, Toshihiro Maki
  • Patent number: 5913100
    Abstract: A Mo-W material for the formation of wirings is discloses which, as viewed integrally, comprises 20 to 95% of tungsten and the balance of molybdenum and inevitable impurities by atomic percentage. The Mo-W material for wirings is a product obtained by compounding and integrating a Mo material and a W material as by the powder metallurgy technique or the smelting technique or a product obtained by arranging these materials in amounts calculated to account for the percentage composition mentioned above. The Mo-W material containing W in a proportion in the range of from 20 to 95% manifests low resistance and, at the same time, excels in workability and tolerance for etchants. The wiring thin film which is formed of the Mo-W alloy of this percentage composition is used as address wirings and others for liquid crystal display devices.
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: June 15, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuo Kohsaka, Yoshiharu Fukasawa, Yoshiko Tsuji, Mitsushi Ikeda, Michio Sato, Toshihiro Maki
  • Patent number: 5679983
    Abstract: This is a highly purified metal comprising one metal selected from the group consisted of titanium, zirconium and hafnium. The highly purified metal has an Al content of not more than 10 ppm. It also has an oxygen content of more than 250 ppm, each of Fe, Ni and Cr contents not more than 10 ppm and each of Na and K contents not more than 0.1 ppm. The highly purified metal is obtained by either purifying crude metal by the iodide process or surface treating crude metal to remove a contaminated layer existing on the surface thereof and then melting The surface treated material with electron bean in a high vacuum.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: October 21, 1997
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Minoru Obata, Mituo Kawai, Michio Satou, Takashi Yamanobe, Toshihiro Maki, Noriaki Yagi, Shigeru Ando
  • Patent number: 5634825
    Abstract: An electrical terminal to be inserted into a terminal receiving chamber of a connector housing is provided. The terminal includes a terminal body which can be provided by folding a conductive metal plate and a protective cover made of synthetic insulating material to cover the terminal body. The protective cover is provided on a rear side thereof with a flexible engagement piece having an engagement projection by which the terminal can be engaged in the connector housing.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: June 3, 1997
    Assignee: Yazaki Corporation
    Inventor: Toshihiro Maki
  • Patent number: 5470527
    Abstract: A sputtering target that consists essentially of a continuous matrix of Ti-W phase, Ti phase having a particle diameter of 50 .mu.m or less distributed in the matrix, and a W phase having a particle diameter of 20 .mu.m or less also distributed in the matrix. Preferably the target contains aluminum in the range of 1 ppm or less. The target has high density and a low impurity content, which reduces the generation of particles from the target when it is used for sputtering. A method of manufacturing the sputtering target is also disclosed.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 28, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamanobe, Michio Satou, Takashi Ishigami, Minoru Obata, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Shigeru Ando
  • Patent number: 5458697
    Abstract: This is a highly purified metal comprising one metal selected from the group consisted of titanium, zirconium and hafnium. The highly purified metal has an Al content of not more than 10 ppm. It also has an oxygen content of more than 250 ppm, each of Fe, Ni and Cr contents not more than 10 ppm and each of Na and K contents not more than 0.1 ppm. The highly purified metal is obtained by either purifying crude metal by the iodide process or surface treating crude metal to remove a contaminated layer existing on the surface thereof and then melting The surface treated material with electron bean in a high vacuum.
    Type: Grant
    Filed: December 7, 1994
    Date of Patent: October 17, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Minoru Obata, Mituo Kawai, Michio Satou, Takashi Yamanobe, Toshihiro Maki, Noriaki Yagi, Shigeru Ando
  • Patent number: 5418071
    Abstract: In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
    Type: Grant
    Filed: February 4, 1993
    Date of Patent: May 23, 1995
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michio Satou, Takashi Yamanobe, Takashi Ishigami, Mituo Kawai, Noriaki Yagi, Toshihiro Maki, Minoru Obata, Shigeru Ando
  • Patent number: 5196916
    Abstract: This is a highly purified metal comprising one metal selected from the group consisted of titanium, zirconium and hafnium. The highly purified metal has an Al content of not more than 10 ppm. It also has an oxygen content of not more than 250 ppm, each of Fe, Ni and Cr contents not more than 10 ppm and each of Na and K contents not more than 0.1 ppm. The highly purified metal is obtained by either purifying crude metal by the iodide process or surface treating crude metal to remove a contaminated layer existing on the surface thereof and then melting the surface treated material with electron beam in a high vacuum.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: March 23, 1993
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ishigami, Minoru Obata, Mituo Kawai, Michio Satou, Takashi Yamanobe, Toshihiro Maki, Noriaki Yagi, Shigeru Ando
  • Patent number: D316703
    Type: Grant
    Filed: January 11, 1988
    Date of Patent: May 7, 1991
    Assignee: Yazaki Corporation
    Inventors: Hidenori Eto, Toshihiro Maki, Yukio Ohta, Toru Matsunaga
  • Patent number: D316704
    Type: Grant
    Filed: January 11, 1988
    Date of Patent: May 7, 1991
    Assignee: Yazaki Corporation
    Inventors: Hidenori Eto, Toshihiro Maki, Yukio Ohta, Toru Matsunaga
  • Patent number: D324205
    Type: Grant
    Filed: October 16, 1989
    Date of Patent: February 25, 1992
    Assignee: Yazaki Corporation
    Inventors: Toshihiro Maki, Mark S. Grant