Patents by Inventor Toshio Nakanishi

Toshio Nakanishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170115199
    Abstract: A particulate measurement apparatus controls a particulate sensor which includes an ion generation section (110), an exhaust gas electrification section (120), an ion trapping section (130), and a second electrode (132). The second electrode (132) is maintained at a potential repulses the ions to assist the trapping of the ions at the ion trapping section (130). The particulate measurement apparatus includes a second isolation transformer (720b) and an auxiliary electrode current measurement circuit (780). The second isolation transformer (720b) applies a voltage to the second electrode (132) through a second wiring line (222). The auxiliary electrode current measurement circuit (780) detects an auxiliary electrode current Iir flowing to the second wiring line (222). The particulate measurement apparatus determines at least one of the state of the particulate sensor and the state of the second wiring line (222) based on the auxiliary electrode current Iir.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 27, 2017
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Kaoru HISADA, Toshio NAKANISHI, Yuichi GOTO, Katsunori YAZAWA
  • Publication number: 20160139098
    Abstract: A measurement apparatus includes a plurality of modules and a main unit for collecting measurement data output from the modules. The housing of the main unit can be carried by a user of the measurement apparatus, and the plurality of modules are removably accommodated in the housing. A CAN I/F circuit of the main unit collects the measurement data output from the module accommodated in the housing. A main CPU of the main unit outputs the collected measurement data to, for example, a personal computer connected to the main unit. An internal memory and a USB memory connected to a USB memory module store the collected measurement data.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 19, 2016
    Applicant: NGK SPARK PLUG CO., LTD.
    Inventors: Yoshinori INOUE, Katsunori YAZAWA, Hiroshi INAGAKI, Wenjing MA, Kaoru HISADA, Toshio NAKANISHI
  • Publication number: 20150162193
    Abstract: Disclosed is a plasma processing method including: growing a polycrystalline silicon layer on a processing target base body; and exposing the polycrystalline silicon layer to hydrogen radicals by supplying a processing gas containing hydrogen into a processing container that accommodates the processing target base body including the polycrystalline silicon layer grown thereon and radiating microwaves within the processing container to generate the hydrogen radicals.
    Type: Application
    Filed: April 17, 2013
    Publication date: June 11, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Daisuke Katayama, Minoru Honda, Toshio Nakanishi
  • Publication number: 20150093886
    Abstract: A plasma processing method of one embodiment of the present invention is disclosed for growing a polycrystalline silicon layer on a base material to be processed. The plasma processing method includes: (a) a step for preparing, in a processing container, the base material to be processed; and (b) a step for growing the polycrystalline silicon layer on the base material by introducing microwaves for plasma excitation into the processing container, and introducing a silicon-containing raw material gas into the processing container.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 2, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Toshio Nakanishi, Daisuke Katayama
  • Publication number: 20150082772
    Abstract: An engine includes an engine body, a DPF case therein, high pressure and low pressure EGR paths, and a supercharger. The high pressure EGR path is between exhaust and intake manifolds. An exhaust gas discharge path extends from the DPF case. An intake pipe extends from the supercharger air compressor. The low pressure EGR path is between the exhaust gas discharge path of the DPF case and the intake pipe. The low pressure EGR path includes a low pressure EGR cooler. An extending direction of a crankshaft defines a longitudinal direction. A flywheel exists on a rear side. A width direction of the engine body defines a lateral direction. The low pressure EGR path includes a rear path portion extending along a rear side of the engine body, and a side path portion extending along a lateral side of the engine body on a side close to the exhaust manifold.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 26, 2015
    Inventors: Kazumichi MATSUISHI, Tetsuya KOSAKA, Tomohiro NINOMIYA, Yusuke SUZUKI, Toshio NAKANISHI, Yongchol LEE, Takashi KUSHIGEMACHI
  • Patent number: 8569186
    Abstract: A plasma processing apparatus generates plasma by introducing microwaves into a processing chamber by using a planar antenna having a plurality of slots. By using the plasma processing apparatus, a nitrogen containing gas and a silicon containing gas introduced into the processing chamber are brought into the plasma state, and at the time of depositing by using the plasma a silicon nitride film on the surface of the a substrate to be processed, stress to the silicon nitride film to be formed is controlled by the combination of the type and the processing pressure of the nitrogen containing gas.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 29, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Kohno, Tatsuo Nishita, Toshio Nakanishi
  • Patent number: 8366953
    Abstract: A plasma cleaning method is performed in a plasma CVD apparatus for depositing a silicon nitride film on a surface of a target substrate, and includes a stage (S1) of supplying a cleaning gas containing NF3 gas into a process container, thereby removing extraneous deposits formed on portions inside the process container; a stage (S2) of supplying a gas containing hydrogen gas into the process container and generating plasma thereof, thereby removing residual fluorine inside the process container; and a stage (S3) of supplying a gas containing a rare gas into the process container and generating plasma thereof, thereby removing residual hydrogen inside the process container.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: February 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Kohno, Tatsuo Nishita, Toshio Nakanishi
  • Publication number: 20120315745
    Abstract: A high-quality crystalline silicon film can be formed at a high film forming rate by performing a plasma CVD process. In a crystalline silicon film forming method for forming a crystalline silicon film on a surface of a processing target object by using a plasma CVD apparatus for introducing microwave into a processing chamber through a planar antenna having a multiple number of holes and generating plasma, the crystalline silicon film forming method includes generating plasma by exciting a film forming gas containing a silicon compound represented as SinH2n+2 (n is equal to or larger than 2) by the microwave; and depositing a crystalline silicon film on the surface of the processing target substrate by performing the plasma CVD process with the plasma.
    Type: Application
    Filed: September 28, 2010
    Publication date: December 13, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Daisuke Katayama, Minoru Honda, Masayuki Kohno, Toshio Nakanishi
  • Patent number: 8329596
    Abstract: A plasma processing apparatus generates plasma by introducing microwaves into a processing chamber by using a planar antenna having a plurality of slots. By using the plasma processing apparatus, a nitrogen containing gas and a silicon containing gas introduced into the processing chamber are brought into the plasma state, and at the time of depositing by using the plasma a silicon nitride film on the surface of the a substrate to be processed, stress to the silicon nitride film to be formed is controlled by the combination of the type and the processing pressure of the nitrogen containing gas.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: December 11, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Kohno, Tatsuo Nishita, Toshio Nakanishi
  • Patent number: 8318614
    Abstract: A Plasma processing apparatus (100) introduces microwaves into a chamber (1) by a plane antenna (31) which has a plurality of holes. A material gas, which contains a nitrogen-containing compound and a silicon-containing compound, is introduced into the chamber (1) by using the plasma processing apparatus, and plasma is generated by the microwaves. Then, a silicon nitride film is deposited by the plasma on a surface of an object to be processed. The trap density of the silicon nitride film is controlled by adjusting the conditions of the plasma CVD process.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: November 27, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Kohno, Tatsuo Nishita, Toshio Nakanishi, Yoshihiro Hirota
  • Patent number: 8258571
    Abstract: The invention provides a MOS semiconductor memory device that achieves excellent data retention characteristics while also achieving high-speed data write performance, low-power operation performance, and high reliability. A MOS semiconductor memory device 601 includes a first insulating film 111 and fifth insulating film 115 having large bandgaps 111a and 115a, a third insulating film 113 having the smallest bandgap 113a, and a second insulating film 112 and fourth insulating film 114 interposed between the third insulating film 113 and the first and fifth insulating films 111 and 115, respectively, and having intermediate bandgaps 112a and 114a.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 4, 2012
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Tetsuo Endoh, Masayuki Kohno, Tatsuo Nishita, Minoru Honda, Toshio Nakanishi, Yoshihiro Hirota
  • Patent number: 8247331
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface; a step of performing first nitriding to the silicon exposed on the surface of the substrate, and forming a silicon nitride film having a thickness of 0.2 nm but not more than 1 nm on the surface of the substrate; and a step of performing first heat treatment to the silicon nitride film in N2O atmosphere and forming a silicon nitride film. This method may further include a step of performing second nitriding to the silicon oxynitride film, and furthermore, may include a step of performing second heat treatment to the silicon oxynitride film after the second nitriding.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 21, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Publication number: 20120208376
    Abstract: A method of forming a silicon nitride film by using a plasma CVD method, where the silicon nitride film has abundant traps and is useful as a charge accumulation layer of a nonvolatile semiconductor memory device. A silicon nitride film having a lot of traps is formed by performing plasma CVD by using processing gases including a nitrogen gas and a gas of a compound formed of silicon atoms and chlorine atoms, and by setting a pressure in a processing container within a range between more than or equal to 0.1 Pa and less than or equal to 8 Pa, in a plasma CVD apparatus that performs film-formation by introducing microwaves in the processing container by using a planar antenna having a plurality of holes to generate plasma.
    Type: Application
    Filed: September 28, 2010
    Publication date: August 16, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Masayuki Kohno, Toshio Nakanishi
  • Publication number: 20120178268
    Abstract: A plasma processing apparatus generates plasma by introducing microwaves into a processing chamber by using a planar antenna having a plurality of slots. By using the plasma processing apparatus, a nitrogen containing gas and a silicon containing gas introduced into the processing chamber are brought into the plasma state, and at the time of depositing by using the plasma a silicon nitride film on the surface of the a substrate to be processed, stress to the silicon nitride film to be formed is controlled by the combination of the type and the processing pressure of the nitrogen containing gas.
    Type: Application
    Filed: March 19, 2012
    Publication date: July 12, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masayuki KOHNO, Tatsuo NISHITA, Toshio NAKANISHI
  • Publication number: 20120126376
    Abstract: To produce a silicon dioxide film having concentration of hydrogen atoms below or equal to 9.9×1020 atoms/cm3 in the silicon dioxide film, as measured by using secondary ion mass spectrometry (SIMS), a plasma CVD, which generate plasma by introducing microwaves into a process chamber by using a planar antenna having a plurality of apertures and forms a film, is performed by setting the pressure inside the process chamber within a range from 0.1 Pa to 6.7 Pa and by using a gas of a compound composed of silicon atoms and chlorine atoms and an oxygen containing gas.
    Type: Application
    Filed: September 29, 2009
    Publication date: May 24, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Minoru Honda, Toshio Nakanishi, Masayuki Kohno, Junya Miyahara
  • Patent number: 8183165
    Abstract: According to the present invention,when a nitridation process by plasma generated by a microwave is applied to a substrate with an oxide film having been formed thereon to from an oxynitride film, the microwave is intermittently supplied. By the intermittent supply of the microwave, ion bombardment is reduced in accordance with a decrease in electron temperature, and a diffusion velocity of nitride species in the oxide film lowers, which as a result makes it possible to prevent nitrogen from concentrating in a substrate-side interface of an oxynitride film to increase the nitrogen concentration therein. Consequently,it is possible to improve quality of the oxynitride film, resulting in a reduced leadage current, an improved operating speed, and improved NBTI resistance.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: May 22, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Seiji Matsuyama, Toshio Nakanishi, Shigenori Ozaki, Hikaru Adachi, Koichi Takatsuki, Yoshihiro Sato
  • Patent number: 8158535
    Abstract: A method for forming an insulating film includes a step of preparing a substrate, which is to be processed and has silicon exposed on the surface, a step of performing oxidizing to the silicon on the surface, and forming a silicon oxide thin film on the surface of the silicon, a step of performing first nitriding to the silicon oxide film and the base silicon thereof, and forming a silicon oxynitride film, and a step of performing first heat treatment to the silicon oxynitride film in N2O atmosphere. In such method, a step of performing second nitriding to the silicon oxynitride film may be further included after the first heat treatment, and furthermore, a step of performing second heat treatment to the silicon oxynitride film after the second nitriding may be included.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 17, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Minoru Honda, Yoshihiro Sato, Toshio Nakanishi
  • Patent number: 8138103
    Abstract: A plasma processing apparatus generates plasma by introducing microwaves into a processing chamber by using a planar antenna having a plurality of slots. By using the plasma processing apparatus, a nitrogen containing gas and a silicon containing gas introduced into the processing chamber are brought into the plasma state, and at the time of depositing by using the plasma a silicon nitride film on the surface of the a substrate to be processed, stress to the silicon nitride film to be formed is controlled by the combination of the type and the processing pressure of the nitrogen containing gas.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 20, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Masayuki Kohno, Tatsuo Nishita, Toshio Nakanishi
  • Patent number: 8124484
    Abstract: To manufacture a MOS memory device having a dielectric film laminate in which adjacent dielectric films have band-gaps of different magnitudes, a plasma processing device which transmits microwaves to a chamber by means of a planar antenna having a plurality of holes is used to perform plasma CVD under pressure conditions that differ from at least pressure conditions used when forming the adjacent dielectric films, and the dielectric films are sequentially formed by altering the band-gaps of the adjacent dielectric films that constitute the dielectric film laminate.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: February 28, 2012
    Assignees: Tohoku University, Tokyo Electron Limited
    Inventors: Tetsuo Endoh, Masayuki Kohno, Syuichiro Otao, Minoru Honda, Toshio Nakanishi
  • Patent number: D721097
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 13, 2015
    Assignee: Kubota Corporation
    Inventors: Tetsuya Kosaka, Toshio Nakanishi