Patents by Inventor Toshitaka Nakamura

Toshitaka Nakamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120268810
    Abstract: There is provided an infrared ray reflective substrate including an infrared ray reflective layer, a protective layer disposed on a surface of the infrared ray reflective layer and a transparent substrate that supports the infrared ray reflective layer from a rear surface side thereof, wherein the protective layer is formed from a polycycloolefin layer.
    Type: Application
    Filed: November 9, 2010
    Publication date: October 25, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yutaka Ohmori, Kazuaki Sasa, Toshitaka Nakamura
  • Patent number: 8283843
    Abstract: A ceramic composite laminate includes a wavelength-converting layer and a non-emissive layer, wherein the ceramic composite laminate has a wavelength conversion efficiency (WCE) of at least 0.650. The ceramic composite laminate can also include a wavelength-converting ceramic layer comprising an emissive material and a scattering material, wherein the laminated composite has a total transmittance of between about 40% to about 85%. The wavelength-converting layer may be formed from plasma YAG:Ce powder.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 9, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Guang Pan, Hironaka Fujii, Hiroaki Miyagawa, Rajesh Mukherjee, Bin Zhang, Toshitaka Nakamura, Amane Mochizuki
  • Publication number: 20120235203
    Abstract: Some embodiments disclosed herein are related to methods of preparing a nanoparticle composition comprising: providing an aerosol comprising a plurality of droplets of a precursor solution comprising at least one nanoparticle precursor and an expansive component; passing the aerosol through a plasma; and collecting a nanoparticle composition product from the carrier gas which has exited the plasma. Some embodiments relate to nanoparticle compositions provided by this process. Some embodiments relate to light-emitting diodes or light emitting devices comprising these compositions.
    Type: Application
    Filed: November 17, 2010
    Publication date: September 20, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Rajesh Mukherjee, Hironaka Fujii, Toshitaka Nakamura, Amane Mochizuki
  • Publication number: 20120218736
    Abstract: Disclosed herein are phosphor compositions having high gadolinium concentrations. Some embodiments include a thermally stable ceramic body comprising an emissive layer, wherein said emissive layer comprises a compound represented by the formula (A1-x-zGdxDz)3B5O12, wherein: D is a first dopant selected from the group consisting of Nd, Er, Eu, Mn, Cr, Yb, Sm, Tb, Ce, Pr, Dy, Ho, Lu and combinations thereof; A is selected from the group consisting of Y, Lu, Ca, La, Tb, and combinations thereof; B is selected from the group consisting of Al, Mg, Si, Ga, In, and combinations thereof; x is in the range of about 0.20 and about 0.80; and z is in the range of about 0.001 and about 0.10. Also disclosed are thermally stable ceramic bodies that can include the composition of formula I. Methods of making the ceramic body and a lighting device including the ceramic body are also disclosed.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 30, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Bin Zhang, Amane Mochizuki, Toshitaka Nakamura, Guang Pan, Hiroaki Miyagawa, Hironaka Fujii
  • Publication number: 20120199858
    Abstract: A light emitting device includes: at least one light emitting component (LEC) comprising a light-emitting face having a longest linear dimension D1; at least one wavelength-converting consolidated monolithic component (WCC) having a light-receiving face, a light-emitting face, and a peripheral edge. The WCC is radiationally linked to and spaced apart from the LEC at a distance D2, D2 being less than D1, wherein a projection edge of the light-emitting face of the LEC and the peripheral edge of the WCC define a shortest distance D3 therebetween, wherein a surface area of the light-receiving face of the WCC is at least 120% of that of the light-emitting face of the LEC, and the LEC and WCC are positioned relative to each other to satisfy D3/D2?1.
    Type: Application
    Filed: July 13, 2011
    Publication date: August 9, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Hironaka FUJII, Toshitaka NAKAMURA
  • Publication number: 20120194066
    Abstract: A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
    Type: Application
    Filed: March 30, 2012
    Publication date: August 2, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Toshitaka Nakamura, Hironaka Fujii, Hiroaki Miyagawa, Rajesh Mukherjee, Bin Zhang, Amane Mochizuki
  • Patent number: 8206672
    Abstract: Disclosed herein are processes for making a plurality of substantially phase-pure metal oxide particles, the particles comprising a garnet structure, the process comprising: subjecting a dispersion of precursors to a solvothermal treatment to form a garnet intermediate and applying a flow-based thermochemical process to said garnet intermediate.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 26, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Rajesh Mukherjee, Toshitaka Nakamura, Sheng Li, Brett T. Harding, Amane Mochizuki
  • Patent number: 8207663
    Abstract: Disclosed herein are phosphor compositions which can exhibit a broad emission spectrum and improved color rendering index (CRI) relative to conventional phosphor materials. The phosphor compositions may, in some embodiments, be represented by the Formula I: (RE2?x+yCexAk1?y)(MG4?z?rSirMnz)(Si1?ePe)O12?rNr, wherein RE comprises at least one rare earth metal; Ak comprises at least one alkaline earth metal; MG comprises at least one main group element; x is greater than 0 and less than or equal to 0.2; y is less than 1; z is greater than 0 and less than or equal to 0.8; e is about 0 or less than or equal to 0.16; r is about 0 or less than or equal to 1; and z is about the sum of e and y. Also disclosed herein are lighting apparatuses including the phosphor compositions, as well as methods of making and using the phosphor compositions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: June 26, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Ekambaram Sambandan, Bin Zhang, Rajesh Mukherjee, Toshitaka Nakamura, Hironaka Fujii
  • Publication number: 20120141771
    Abstract: Disclosed herein are emissive ceramic materials having a dopant concentration gradient along a thickness of a yttrium aluminum garnet (YAG) region. The dopant concentration gradient may include a maximum dopant concentration, a half-maximum dopant concentration, and a slope at or near the half-maximum dopant concentration. The emissive ceramics may, in some embodiments, exhibit high internal quantum efficiencies (IQE). The emissive ceramics may, in some embodiments, include porous regions. Also disclosed herein are methods of make the emissive ceramic by sintering an assembly having doped and non-doped layers.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 7, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Guang Pan, Hiroaki Miyagawa, Hironaka Fujii, Bin Zhang, Rajesh Mukherjee, Toshitaka Nakamura, Amane Mochizuki
  • Publication number: 20120119148
    Abstract: Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
    Type: Application
    Filed: January 25, 2012
    Publication date: May 17, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Hiroaki Miyagawa, Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Patent number: 8169136
    Abstract: A light emitting device comprising a light emitting component that emits light with a first peak wavelength, and at least one sintered ceramic plate over the light emitting component is described. The at least one sintered ceramic plate is capable of absorbing at least a portion of the light emitted from said light emitting component and emitting light of a second peak wavelength, and has a total light transmittance at the second peak wavelength of greater than about 40%. A method for improving the luminance intensity of a light emitting device comprising providing a light emitting component and positioning at least one translucent sintered ceramic plate described above over the light emitting component is also disclosed.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: May 1, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Toshitaka Nakamura, Hironaka Fujii, Hiroaki Miyagawa, Rajesh Mukherjee, Bin Zhang, Amane Mochizuki
  • Publication number: 20120094083
    Abstract: Disclosed herein are a laminated composite and process for making the same. The laminated composite includes at least one wavelength-converting layer and at least one non-emissive layer, wherein a vertical relief gap pattern defines the composite into a plurality of discrete separable portions, and the discrete separable portions are breakably joined by a non-emissive layer. Separation along the relief gap pattern reduces color variation amongst the discrete portions and processes.
    Type: Application
    Filed: October 14, 2011
    Publication date: April 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Toshitaka NAKAMURA, Hironaka FUJII, Amane MOCHIZUKI
  • Publication number: 20120068213
    Abstract: A laminated composite includes a wavelength-converting layer and a non-emissive blocking layer, wherein the emissive layer includes a garnet host material and an emissive guest material, and the non-emissive blocking layer includes a non-emissive blocking material. The metallic element constituting the non-emissive blocking material has an ionic radius which is less than about 80% of an ionic radius of an A cation element when the garnet or garnet-like host material is expressed as A3B5O12 and/or an element constituting the emissive guest material, and the non-emissive blocking layer is substantially free of the emissive guest material migrated through an interface between the emissive layer and the non-emissive blocking layer.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Bin Zhang, Guang Pan, Hiroaki Miyagawa, Hironaka Fujii, Rajesh Mukherjee, Toshitaka Nakamura
  • Patent number: 8137588
    Abstract: Described herein are batches of nanoscale phosphor particles having an average particle size of less than about 200 nm and an average internal quantum efficiency of at least 40%. The batches of nanoscale phosphor particles can be substantially free of impurities. Also described herein are methods of manufacturing the nanoscale phosphor particles by passing phosphor particles through a reactive field to thereby dissociate them into elements and then synthesizing nanoscale phosphor particles by nucleating the elements and quenching the resulting particles.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: March 20, 2012
    Assignees: Nitto Denko Corporation, Regents of the University of Minnesota
    Inventors: Jami Hafiz, Toshitaka Nakamura, Steven L Girshick, Joachim V. R. Heberlein, Amane Mochizuki, Rajesh Mukherjee
  • Patent number: 8137587
    Abstract: Disclosed herein is a method of increasing the luminescence efficiency of a translucent phosphor ceramic. Other embodiments are methods of manufacturing a phosphor translucent ceramic having increased luminescence. Another embodiment is a light emitting device comprising a phosphor translucent ceramic made by one of these methods.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: March 20, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Hiroaki Miyagawa, Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Patent number: 8123981
    Abstract: One embodiment provides a method for fabricating a translucent phosphor ceramic compact comprising: heating a precursor powder to at least about 1000° C. under a reducing atmosphere to provide a pre-conditioned powder, forming an intermediate compact comprising the pre-conditioned powder and a flux material, and heating the intermediate compact under a vacuum to a temperature of at least about 1400° C. In another embodiment, the compact may be a cerium doped translucent phosphor ceramic compact comprising yttrium, aluminum, oxygen, and cerium sources. Another embodiment may be a light emitting device having the phosphor translucent ceramic provided as described herein.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: February 28, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Hiroaki Miyagawa, Toshitaka Nakamura, Hironaka Fujii, Amane Mochizuki
  • Publication number: 20120039064
    Abstract: A light-emitting device includes a circuit board to which external electric power is supplied; a light emitting diode that is electrically connected onto the circuit board and emits light based on electric power from the circuit board; a housing provided on the circuit board so as to surround the light emitting diode and so that the upper end portion of the housing is positioned above the upper end portion of the light emitting diode; an adhesive layer that is provided on the housing, the adhesive layer being provided entirely in the circumferential direction of the housing, and the adhesive layer having a length from the inner circumferential edge to the outer circumferential edge of mainly 0.3 mm or more and a thickness of 200 ?m or less; and a phosphor ceramic that is allowed to adhere onto the housing with the adhesive layer interposed therebetween.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 16, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yasunari OOYABU, Toshitaka NAKAMURA, Hironaka FUJII, Hisataka ITO
  • Publication number: 20120032219
    Abstract: A light-emitting device includes a circuit board to which external electric power is supplied, a light emitting diode that is electrically connected onto the circuit board and emits light based on electric power from the circuit board, a housing provided on the circuit board so as to surround the light emitting diode and so that the upper end portion of the housing is positioned above the upper end portion of the light emitting diode, and a fluorescent laminate provided on the housing. The fluorescent laminate includes a first fluorescent layer that emits fluorescent light and a second fluorescent layer that emits fluorescent light having a wavelength that is longer than that of the first fluorescent layer. The second fluorescent layer is disposed on the housing and the first fluorescent layer is laminated on the second fluorescent layer.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 9, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yasunari OOYABU, Toshitaka NAKAMURA, Hironaka FUJII, Hisataka ITO
  • Publication number: 20120025247
    Abstract: A component for a light-emitting device includes a sealing resin layer that is capable of sealing in a light emitting diode, a fluorescent layer that is formed on one face of the sealing resin layer and is capable of emitting fluorescent light, and a reflection layer that is provided on the other face of the sealing resin layer so as to avoid a region where the sealing resin layer seals in the light emitting diode and is capable of reflecting the light.
    Type: Application
    Filed: July 13, 2011
    Publication date: February 2, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yasunari OOYABU, Toshitaka NAKAMURA, Hironaka FUJII, Hisataka ITO
  • Publication number: 20120012875
    Abstract: A component for a light-emitting device includes a fluorescent layer that is capable of emitting fluorescent light and a housing that is connected to the fluorescent layer for housing a light-emitting diode.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yasunari OOYABU, Hironaka FUJII, Toshitaka NAKAMURA, Hisataka ITO