Patents by Inventor Toshiyuki Miyamoto

Toshiyuki Miyamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160315178
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Application
    Filed: July 7, 2016
    Publication date: October 27, 2016
    Inventors: Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI
  • Publication number: 20160261087
    Abstract: The present embodiment relates to an optical amplifier which can perform an amplification operation equivalent to a normal operation even with an increase of dark current in a PD forming a part of a light detection circuit for monitoring signal light as an amplification object. In the optical amplifier, a detection controller performs an anomaly determination on a light detection circuit due to an increase of dark current in the PD based on a difference between temporal change amounts of a signal component of a voltage of output signal from a light receiving unit including the PD, and a voltage component in a high frequency region included in the signal component. An amplification controller can perform suitable switching of control on a drive current to a pumping light source, based on the result of the determination.
    Type: Application
    Filed: February 26, 2016
    Publication date: September 8, 2016
    Inventors: Fumiya UEHARA, Toshiyuki MIYAMOTO, Tetsufumi TSUZAKI
  • Patent number: 9437594
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: September 6, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tetsuhiro Tanaka, Yoshinori Ieda, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki, Mitsuhiro Ichijo, Toshiya Endo
  • Publication number: 20160247903
    Abstract: In a semiconductor device including an oxide semiconductor, the amount of oxygen vacancies is reduced. Moreover, electrical characteristics of a semiconductor device including an oxide semiconductor are improved. The semiconductor device includes a transistor including a gate electrode over a substrate, a gate insulating film covering the gate electrode, an oxide semiconductor film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the oxide semiconductor film; and over the transistor, a first insulating film covering the gate insulating film, the oxide semiconductor film, and the pair of electrodes; and a second insulating film covering the first insulating film. An etching rate of the first insulating film is lower than or equal to 10 nm/min and lower than an etching rate of the second insulating film when etching is performed at 25° C. with 0.5 weight % of hydrofluoric acid.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Kenichi OKAZAKI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Shunpei YAMAZAKI, Toshinari SASAKI
  • Patent number: 9412874
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: August 9, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Patent number: 9337342
    Abstract: In a semiconductor device including an oxide semiconductor, the amount of oxygen vacancies is reduced. Moreover, electrical characteristics of a semiconductor device including an oxide semiconductor are improved. The semiconductor device includes a transistor including a gate electrode over a substrate, a gate insulating film covering the gate electrode, an oxide semiconductor film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the oxide semiconductor film; and over the transistor, a first insulating film covering the gate insulating film, the oxide semiconductor film, and the pair of electrodes; and a second insulating film covering the first insulating film. An etching rate of the first insulating film is lower than or equal to 10 nm/min and lower than an etching rate of the second insulating film when etching is performed at 25° C. with 0.5 weight % of hydrofluoric acid.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 10, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Shunpei Yamazaki, Toshinari Sasaki
  • Patent number: 9320111
    Abstract: A light-emitting device that is less influenced by variations in threshold voltage of a transistor is provided. Further, a light-emitting device in which variations in luminance due to variations in threshold voltage of a transistor can be reduced is provided. Further, influences due to variations in threshold voltage of a transistor are corrected in a short time. A light-emitting element, a transistor functioning as a switch supplying current to the light-emitting element, and a circuit in which threshold voltage of the transistor is obtained and voltage between a gate and a source (gate voltage) of the transistor is corrected in accordance with the obtained threshold voltage are included. An n-channel transistor in which threshold voltage changes in a positive direction and the amount of the change is small is used. When the threshold voltage of the transistor is obtained, the gate voltage of the transistor is adjusted as appropriate.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 19, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki Miyake, Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Shunpei Yamazaki
  • Patent number: 9262061
    Abstract: A display control device for a construction machine includes: a display control unit that controls a display content of a screen including various pieces of information; a first operation member group having a plurality of operation members that receive a plurality of kinds of first operated input, respectively, for the screen; a second operation member group that receives a second operated input for performing a substitute setting in which one of the plurality of kinds of first operated input by one operation member of the plurality of operation members is substituted by an input by another operation member; a third operation member that receives a third operated input for starting the substitute setting; and a setting unit that causes a substitute setting screen for performing the substitute setting in response to the third operated input to be displayed and that decides a content of the substitute setting according to the second operated input on the substitute setting screen, wherein when the first operat
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: February 16, 2016
    Assignee: Hitachi Construction Machinery Co., Ltd.
    Inventor: Toshiyuki Miyamoto
  • Publication number: 20160027926
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide insulating layer over the gate insulating layer, an oxide semiconductor layer being above and in contact with the oxide insulating layer and overlapping with the gate electrode layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The gate insulating layer includes a silicon film containing nitrogen. The oxide insulating layer contains one or more metal elements selected from the constituent elements of the oxide semiconductor layer. The thickness of the gate insulating layer is larger than that of the oxide insulating layer.
    Type: Application
    Filed: October 8, 2015
    Publication date: January 28, 2016
    Inventors: Shunpei YAMAZAKI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI
  • Publication number: 20160028034
    Abstract: A method for manufacturing a flexible semiconductor device is disclosed. The method includes: forming a separation layer of a metal over a substrate; treating the separation layer with plasma under an atmosphere containing nitrogen, oxygen, silicon, and hydrogen; forming a layer over the plasma-treated separation layer, the layer being capable of supplying hydrogen and nitrogen to the separation layer; forming a functional layer over the separation layer; performing heat treatment to promote the release of hydrogen and nitrogen from the layer; and separating the substrate at the separation layer. The method allows the formation of an extremely thin oxide layer over the separation layer, which facilitates the separation, reduces the probability that the oxide layer remains under the layer, and contributes to the increase in efficiency of a device included in the functional layer.
    Type: Application
    Filed: July 16, 2015
    Publication date: January 28, 2016
    Inventors: Seiji YASUMOTO, Masataka SATO, Masafumi NOMURA, Toshiyuki MIYAMOTO
  • Patent number: 9159837
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a gate insulating layer over the gate electrode layer, an oxide insulating layer over the gate insulating layer, an oxide semiconductor layer being above and in contact with the oxide insulating layer and overlapping with the gate electrode layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The gate insulating layer includes a silicon film containing nitrogen. The oxide insulating layer contains one or more metal elements selected from the constituent elements of the oxide semiconductor layer. The thickness of the gate insulating layer is larger than that of the oxide insulating layer.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: October 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Publication number: 20150236168
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 20, 2015
    Inventors: Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI
  • Patent number: 9064853
    Abstract: A semiconductor device including an oxide semiconductor and including a more excellent gate insulating film is provided. A highly reliable and electrically stable semiconductor device having a small number of changes in the film structure, the process conditions, the manufacturing apparatus, or the like from a mass production technology that has been put into practical use is provided. A method for manufacturing the semiconductor device is provided. The semiconductor device includes a gate electrode, a gate insulating film formed over the gate electrode, and an oxide semiconductor film formed over the gate insulating film. The gate insulating film includes a silicon nitride oxide film, a silicon oxynitride film formed over the silicon nitride oxide film, and a metal oxide film formed over the silicon oxynitride film. The oxide semiconductor film is formed over and in contact with the metal oxide film.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 23, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masafumi Nomura, Kenichi Okazaki, Toshiyuki Miyamoto, Takashi Hamochi, Shunpei Yamazaki
  • Patent number: 9054200
    Abstract: Electric characteristics of a semiconductor device using an oxide semiconductor are improved. Further, a highly reliable semiconductor device in which a variation in electric characteristics with time or a variation in electric characteristics due to a gate BT stress test with light irradiation is small is manufactured. A transistor includes a gate electrode, an oxide semiconductor film overlapping with part of the gate electrode with a gate insulating film therebetween, and a pair of electrodes in contact with the oxide semiconductor film. The gate insulating film is an insulating film whose film density is higher than or equal to 2.26 g/cm3 and lower than or equal to 2.63 g/cm3 and whose spin density of a signal with a g value of 2.001 is 2×1015 spins/cm3 or less in electron spin resonance.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: June 9, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi
  • Patent number: 9044728
    Abstract: An ozone generating element includes a laminated body including stacked dielectric layers. A discharge electrode is provided on a first of the dielectric layers. An induction electrode is provided on a second of the dielectric layers that is opposed to the discharge electrode with the first dielectric layer interposed therebetween. A protective layer is arranged on the first dielectric layer so as to cover the discharge electrode, and includes a glass ceramic.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 2, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tetsuo Kanamori, Yukihiro Yagi, Takahiro Takada, Toshiyuki Miyamoto
  • Patent number: 9048324
    Abstract: A highly reliable semiconductor device the yield of which can be prevented from decreasing due to electrostatic discharge damage is provided. A semiconductor device is provided which includes a gate electrode layer, a first gate insulating layer over the gate electrode layer, a second gate insulating layer being over the first gate insulating layer and having a smaller thickness than the first gate insulating layer, an oxide semiconductor layer over the second gate insulating layer, and a source electrode layer and a drain electrode layer electrically connected to the oxide semiconductor layer. The first gate insulating layer contains nitrogen and has a spin density of 1×1017 spins/cm3 or less corresponding to a signal that appears at a g-factor of 2.003 in electron spin resonance spectroscopy. The second gate insulating layer contains nitrogen and has a lower hydrogen concentration than the first gate insulating layer.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: June 2, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Kenichi Okazaki
  • Patent number: 8995607
    Abstract: To provide a pulse signal output circuit and a shift register which have lower power consumption, are not easily changed over time, and have a longer lifetime. A pulse signal output circuit includes a first input signal generation circuit; a second input signal generation circuit; an output circuit which includes a first transistor and a second transistor and outputs a pulse signal in response to a signal output from the first and second input signal generation circuits; a monitor circuit which obtains the threshold voltages of the first and second transistors; and a power supply output circuit which generates a power supply potential raised by a potential higher than or equal to a potential which is equal to or substantially equal to the threshold voltage and supplies the power supply potential to the first and second input signal generation circuits. A shift register includes the pulse signal output circuit.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiroyuki Miyake, Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi, Shunpei Yamazaki
  • Publication number: 20150020026
    Abstract: A display control device for a construction machine includes: a display control unit that controls a display content of a screen including various pieces of information; a first operation member group having a plurality of operation members that receive a plurality of kinds of first operated input, respectively, for the screen; a second operation member group that receives a second operated input for performing a substitute setting in which one of the plurality of kinds of first operated input by one operation member of the plurality of operation members is substituted by an input by another operation member; a third operation member that receives a third operated input for starting the substitute setting; and a setting unit that causes a substitute setting screen for performing the substitute setting in response to the third operated input to be displayed and that decides a content of the substitute setting according to the second operated input on the substitute setting screen, wherein when the first operat
    Type: Application
    Filed: February 20, 2013
    Publication date: January 15, 2015
    Inventor: Toshiyuki Miyamoto
  • Publication number: 20140027764
    Abstract: A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 30, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei YAMAZAKI, Tetsuhiro TANAKA, Yoshinori IEDA, Toshiyuki MIYAMOTO, Masafumi NOMURA, Takashi HAMOCHI, Kenichi OKAZAKI, Mitsuhiro ICHIJO, Toshiya ENDO
  • Publication number: 20140001466
    Abstract: In a transistor including an oxide semiconductor film, movement of hydrogen and nitrogen to the oxide semiconductor film is suppressed. Further, in a semiconductor device using a transistor including an oxide semiconductor film, a change in electrical characteristics is suppressed and reliability is improved. A transistor including an oxide semiconductor film and a nitride insulating film provided over the transistor are included, and an amount of hydrogen molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 5×1021 molecules/cm3, preferably less than or equal to 3×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3, and an amount of ammonia molecules released from the nitride insulating film by thermal desorption spectroscopy is less than 1×1022 molecules/cm3, preferably less than or equal to 5×1021 molecules/cm3, more preferably less than or equal to 1×1021 molecules/cm3.
    Type: Application
    Filed: June 18, 2013
    Publication date: January 2, 2014
    Inventors: Toshinari SASAKI, Takashi HAMOCHI, Toshiyuki MIYAMOTO, Masafumi NOMURA, Junichi KOEZUKA, Kenichi OKAZAKI