Patents by Inventor Toyoharu Oohata

Toyoharu Oohata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7364805
    Abstract: A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: April 29, 2008
    Assignee: Sony Corporation
    Inventors: Etsuo Morita, Yousuke Murakami, Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Publication number: 20080081400
    Abstract: A device transfer method and a display apparatus are provided. A device transfer method and a display apparatus are provided by or in which, in transferring devices arranged on a substrate onto another substrate, it is possible to easily strip the substrate after the transfer of the devices, to lower the possibility of damaging of the substrate, and to additionally transfer devices onto the same substrate after the transfer of the devices. A plurality of devices arranged on a temporary holding substrate are embedded into and held in a pressure sensitive adhesive layer formed on a transfer substrate, and the devices are stripped from the temporary holding substrate. Other devices are further additionally embedded into the pressure sensitive adhesive layer before hardening the pressure sensitive adhesive layer, whereby the devices can be arranged on a transfer substrate having a large area.
    Type: Application
    Filed: August 24, 2006
    Publication date: April 3, 2008
    Applicant: SONY CORPORATION
    Inventors: Masato Doi, Katsuhiro Tomoda, Toshihiko Watanabe, Toyoharu Oohata
  • Publication number: 20080050599
    Abstract: A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
    Type: Application
    Filed: October 23, 2007
    Publication date: February 28, 2008
    Applicant: Sony Corporation
    Inventors: Etsuo Morita, Yousuke Murakami, Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 7297566
    Abstract: A display device is formed by burying at least part of a light emitting device in an insulating material, wherein a drive electrode for the light emitting device is formed so as to be extracted on a surface of the insulating material. A display unit is produced by two-dimensionally arraying such light emitting devices on a base body. Since the display device is modularized by burying a light emitting device finely formed in an insulating material, to re-shape the light emitting device into a size easy to handle, it is possible to suppress the production cost of the display unit using such display devices, and to ensure a desirable handling performance of the light emitting device; for example, facilitate the carrying of the light emitting device or the mounting thereof on a base body.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: November 20, 2007
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Hideharu Nakajima, Yoshiyuki Yanagisawa, Toshiaki Iwafuchi
  • Patent number: 7297985
    Abstract: A display device is formed by burying at least part of a light emitting device in an insulating material, wherein a drive electrode for the light emitting device is formed so as to be extracted on a surface of the insulating material. A display unit is produced by two-dimensionally arraying such light emitting devices on a base body. Since the display device is modularized by burying a light emitting device finely formed in an insulating material, to re-shape the light emitting device into a size easy to handle, it is possible to suppress the production cost of the display unit using such display devices, and to ensure a desirable handling performance of the light emitting device; for example, facilitate the carrying of the light emitting device or the mounting thereof on a base body.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: November 20, 2007
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Hideharu Nakajima, Yoshiyuki Yanagisawa, Toshiaki Iwafuchi
  • Publication number: 20070190677
    Abstract: A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided. An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 16, 2007
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Jun Suzuki, Toyoharu Oohata
  • Publication number: 20070187704
    Abstract: A semiconductor light emitting element, manufacturing method. thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided. An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
    Type: Application
    Filed: March 26, 2007
    Publication date: August 16, 2007
    Applicant: SONY CORPORATION
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Jun Suzuki, Toyoharu Oohata
  • Patent number: 7250320
    Abstract: A semiconductor light emitting element, manufacturing method thereof, integrated semiconductor light emitting device, manufacturing method thereof, illuminating device, and manufacturing method thereof are provided. An n-type GaN layer is grown on a sapphire substrate, and a growth mask of SiN, for example, is formed thereon. On the n-type GaN layer exposed through an opening in the growth mask, a six-sided steeple-shaped n-type GaN layer is selectively grown, which has inclined crystal planes each composed of a plurality of crystal planes inclined from the major surface of the sapphire substrate by different angles of inclination to exhibit a convex plane as a whole. On the n-type GaN layer, an active layer and a p-type GaN layer are grown to make a light emitting element structure. Thereafter, a p-side electrode and an n-side electrode are formed.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: July 31, 2007
    Assignee: Sony Corporation
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Jun Suzuki, Toyoharu Oohata
  • Publication number: 20070147453
    Abstract: An n-type GaN layer is grown onto a sapphire substrate and a hexagonal etching mask is formed onto the n-type GaN layer as provided. The n-type GaN layer is etched to a predetermined depth by using the etching mask by the RIE method. A hexagonal prism portion whose upper surface is a C plane is formed. After the etching mask was removed, an active layer and a p-type GaN layer are sequentially grown onto the whole surface of the substrate so as to cover the hexagonal prism portion, thereby forming a light emitting device structure. After that, a p-side electrode is formed onto the p-type GaN layer of the hexagonal prism portion and an n-side electrode is formed onto the n-type GaN layer.
    Type: Application
    Filed: March 6, 2007
    Publication date: June 28, 2007
    Applicant: SONY CORPORATION
    Inventors: Toyoharu Oohata, Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Jun Suzuki
  • Patent number: 7233030
    Abstract: A device transfer method includes the steps of: covering a plurality of devices, which have been formed on a substrate, with a resin layer; forming electrodes in the resin layer in such a manner that the electrodes are connected to the devices; cutting the resin layer, to obtain resin buried devices each containing at least one of the devices; and peeling the resin buried devices from the substrate and transferring them to a device transfer body. This device transfer method is advantageous in easily, smoothly separating devices from each other, and facilitating handling of the devices in a transfer step and ensuring good electric connection between the devices and external wiring, even if the devices are fine devices.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: June 19, 2007
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Yanagisawa, Toyoharu Oohata, Toshiaki Iwafuchi
  • Publication number: 20070125996
    Abstract: A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
    Type: Application
    Filed: January 31, 2007
    Publication date: June 7, 2007
    Applicant: Sony Corporation
    Inventors: Etsuo Morita, Yousuke Murakami, Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 7227189
    Abstract: Nitride semiconductor devices and methods of producing same are provided. The present invention includes forming a nitride semiconductor layer on a base body of the nitride semiconductor under selective and controlled crystal growth conditions. For example, the crystal growth rate, the supply of crystal growth source material and/or the crystal growth area can be varied over time, thus resulting in a nitride semiconductor device with enhanced properties.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: June 5, 2007
    Assignee: Sony Corporation
    Inventors: Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 7221001
    Abstract: Semiconductor light-emitting devices are provided. The semiconductor light-emitting devices include a substrate and a crystal layer selectively grown thereon at least a portion of the crystal layer is oriented along a plane that slants to or diagonally intersect a principal plane of orientation associated with the substrate thereby for example, enhancing crystal properties, preventing threading dislocations, and facilitating device miniaturization and separation during manufacturing and use thereof.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: May 22, 2007
    Assignee: Sony Corporation
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Toyoharu Oohata, Tomoyuki Kikutani
  • Patent number: 7220608
    Abstract: A semiconductor crystal layer formed by epitaxial growth on a seed crystal substrate is embedded in an insulating material in the condition where the seed crystal substrate is removed, electrodes are provided respectively on a first surface of the semiconductor crystal layer and a second surface of the semiconductor layer opposite to the first surface, and lead-out electrodes connected to the electrodes are led out to the same surface side of the insulating material. The semiconductor crystal layer functions as a semiconductor light-emitting device or a semiconductor electronic device. The insulating material is, for example, a resin.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: May 22, 2007
    Assignee: Sony Corporation
    Inventor: Toyoharu Oohata
  • Publication number: 20070087644
    Abstract: A method of producing the image display unit, wherein the image display unit includes an array of a plurality of light emitting devices for displaying an image, and wherein the method of producing the image display unit employs, for example, a space expanding transfer, whereby a first transfer step includes transferring the devices arrayed on a first substrate to a temporary holding member such that the devices are spaced from each other with a pitch larger than a pitch of the devices arrayed on the first substrate, a second holding step includes holding the devices on the temporary holding member, and a third transfer step includes transferring the devices held on the temporary holding member onto a second board such that the devices are spaced from each other with a pitch larger than the pitch of the devices held on the temporary holding member.
    Type: Application
    Filed: November 10, 2006
    Publication date: April 19, 2007
    Applicant: Sony Corporation
    Inventors: Toshiaki Iwafuchi, Toyoharu Oohata, Masato Doi
  • Publication number: 20070085087
    Abstract: A semiconductor light-emitting device is provided. The semiconductor light-emitting device includes: a substrate having a substrate surface oriented along a substrate surface plane; a first grown layer including a first grown layer conductivity type formed on the substrate; a masking layer formed on the first grown layer; a second grown layer of a second grown layer conductivity type formed by selective growth through an opening in the masking layer and including a crystal surface oriented along a crystal surface plane; a first cladding layer including a first cladding layer conductivity type formed along at least a portion of the crystal surface plane; an active layer; and a second cladding layer including a second cladding layer conductivity type. At least one of the first cladding layer, the active layer, and the second cladding layer cover the masking layer surrounding the opening.
    Type: Application
    Filed: November 9, 2006
    Publication date: April 19, 2007
    Applicant: Sony Corporation
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Toyoharu Oohata, Tomoyuki Kikutani
  • Patent number: 7205168
    Abstract: An n-type GaN layer is grown onto a sapphire substrate and a hexagonal etching mask is formed onto the n-type GaN layer as provided. The n-type GaN layer is etched to a predetermined depth by using the etching mask by the RIE method. A hexagonal prism portion whose upper surface is a C plane is formed. After the etching mask was removed, an active layer and a p-type GaN layer are sequentially grown onto the whole surface of the substrate so as to cover the hexagonal prism portion, thereby forming a light emitting device structure. After that, a p-side electrode is formed onto the p-type GaN layer of the hexagonal prism portion and an n-side electrode is formed onto the n-type GaN layer.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: April 17, 2007
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Jun Suzuki
  • Publication number: 20070077674
    Abstract: A process for producing a semiconductor light-emitting device is provided. The process includes providing a substrate including a substrate surface oriented along a substrate surface plane, forming a crystal seed layer on the substrate surface, forming a masking layer on the crystal seed layer, wherein the masking layer includes an opening, forming a crystal layer by selective growth of the crystal seed layer through the opening of the masking layer, wherein the crystal layer includes a crystal layer surface oriented along a crystal layer plane that diagonally intersects the substrate surface, and forming each of a first conductive layer, an active layer, and a second conductive layer along at least a portion of the crystal layer surface.
    Type: Application
    Filed: November 9, 2006
    Publication date: April 5, 2007
    Applicant: Sony Corporation
    Inventors: Hiroyuki Okuyama, Masato Doi, Goshi Biwa, Toyoharu Oohata, Tomoyuki Kikutani
  • Patent number: 7148127
    Abstract: A method of repairing a defective one of devices mounted on substrate is provided. Devices are arrayed on a substrate and electrically connected to wiring lines connected to a drive circuit, to be thus mounted on the substrate. The devices mounted on the substrate are then subjected to an emission test. If a defective device is detected in this test, a repair device is mounted at a position corresponding to a position of the defective device. At this time, after wiring lines connected to the defective device are cut off, the repair device is electrically connected to portions of the wiring lines, the portions of the wiring lines being located at positions nearer to the drive circuit side than the cut-off positions of the wiring lines.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: December 12, 2006
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Toshiaki Iwafuchi, Hisashi Ohba
  • Publication number: 20060250085
    Abstract: A display apparatus is provided. In the display apparatus, a plurality of light emitting devices are mounted in an orderly arranged state, mending light emitting devices capable of light emission are disposed directly above the failed ones of the plurality of light emitting devices, whereby the portions of the failed ones of the plurality of light emitting devices can be mended (repaired), and it is possible to eliminate dark spot defects in use of the display apparatus.
    Type: Application
    Filed: May 3, 2006
    Publication date: November 9, 2006
    Applicant: Sony Corporation
    Inventors: Masato Doi, Toyoharu Oohata, Katsuhiro Tomoda, Toshihiko Watanabe