Patents by Inventor Tristan TRONIC
Tristan TRONIC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250140543Abstract: The present disclosure is directed to a high-voltage magnetron sputtering tool with an enhanced power source including a vacuum chamber containing a magnetron cathode with a magnet array, a target, and an anode, as well as the enhanced power source that includes high-power DC power source and controller that produces a pulsed output. In an aspect, the enhanced power source may include a standard power source that is retrofitted a supplemental high-power DC power source and controller, and alternatively, a high-power DC power source and controller that replaces the standard power source. In addition, the present disclosure is directed to methods for depositing a hydrogen-free diamond-like carbon film on a semiconductor substrate using the high-voltage magnetron sputtering tool. In an aspect, the hydrogen-free diamond-like carbon film may be an etch mask having a sp3 carbon bonding that is greater than 60 percent.Type: ApplicationFiled: November 1, 2023Publication date: May 1, 2025Inventors: Ilya KARPOV, Tristan TRONIC, Arnab SEN GUPTA, I-Cheng TUNG, Jin WANG, Matthew METZ, Eric MATTSON
-
Publication number: 20250142935Abstract: Self-aligned gate endcap (SAGE) architectures with reduced or removed caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with reduced or removed caps, are described. In an example, an integrated circuit structure includes a first gate electrode over a first semiconductor fin. A second gate electrode is over a second semiconductor fin. A gate endcap isolation structure is between the first gate electrode and the second gate electrode, the gate endcap isolation structure having a higher-k dielectric cap layer on a lower-k dielectric wall. A local interconnect is on the first gate electrode, on the higher-k dielectric cap layer, and on the second gate electrode, the local interconnect having a bottommost surface above an uppermost surface of the higher-k dielectric cap layer.Type: ApplicationFiled: December 27, 2024Publication date: May 1, 2025Inventors: Seung Hoon SUNG, Tristan TRONIC, Szuya S. LIAO, Jack T. KAVALIEROS
-
Publication number: 20250112155Abstract: Hybrid bonded die stacks, related apparatuses, systems, and methods of fabrication are disclosed. One or both of an integrated circuit (IC) die hybrid bonding region and a base substrate hybrid bonding region are surrounded by a protective layer and hydrophobic structures on the protective layer. The protective layer is formed prior to pre-bond processing to protect the hybrid bonding region during plasma activation, clean test, high temperature processing, or the like. Immediately prior to bonding, the hydrophobic structures are selectively applied to the protective layer. The hybrid bonding regions are brought together with a liquid droplet therebetween, and capillary forces cause the IC die to self-align. A hybrid bond is formed by evaporating the droplet and a subsequent anneal. The hydrophobic structures contain the liquid droplet for alignment during bonding.Type: ApplicationFiled: September 28, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Kimin Jun, Scott Clendenning, Feras Eid, Robert Jordan, Wenhao Li, Jiun-Ruey Chen, Tayseer Mahdi, Carlos Felipe Bedoya Arroyave, Shashi Bhushan Sinha, Anandi Roy, Tristan Tronic, Dominique Adams, William Brezinski, Richard Vreeland, Thomas Sounart, Brian Barley, Jeffery Bielefeld
-
Publication number: 20250022936Abstract: Self-aligned gate endcap (SAGE) architectures with reduced or removed caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with reduced or removed caps, are described. In an example, an integrated circuit structure includes a first gate electrode over a first semiconductor fin. A second gate electrode is over a second semiconductor fin. A gate endcap isolation structure is between the first gate electrode and the second gate electrode, the gate endcap isolation structure having a higher-k dielectric cap layer on a lower-k dielectric wall. A local interconnect is on the first gate electrode, on the higher-k dielectric cap layer, and on the second gate electrode, the local interconnect having a bottommost surface above an uppermost surface of the higher-k dielectric cap layer.Type: ApplicationFiled: September 27, 2024Publication date: January 16, 2025Inventors: Seung Hoon SUNG, Tristan TRONIC, Szuya S. LIAO, Jack T. KAVALIEROS
-
Publication number: 20250006433Abstract: Apparatuses, memory systems, capacitor structures, and techniques related to ferroelectric capacitors having a hafnium-zirconium oxide film between the electrodes of the capacitor are discussed. The hafnium-zirconium oxide film is thin and has large crystallite grains. The thin large grain hafnium-zirconium oxide film having large grains is formed by depositing a thick hafnium-zirconium oxide film and annealing the thick hafnium-zirconium oxide film to establish the large grain size, and etching back the hafnium-zirconium oxide film to the desired thickness for deployment in the ferroelectric capacitor.Type: ApplicationFiled: June 29, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Sarah Atanasov, Elijah Karpov, Nazila Haratipour, Sou-Chi Chang, Tristan Tronic
-
Publication number: 20240304543Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.Type: ApplicationFiled: May 17, 2024Publication date: September 12, 2024Applicant: Intel CorporationInventors: Kevin Lin, Noriyuki Sato, Tristan Tronic, Michael Christenson, Christopher Jezewski, Jiun-Ruey Chen, James M. Blackwell, Matthew Metz, Miriam Reshotko, Nafees Kabir, Jeffery Bielefeld, Manish Chandhok, Hui Jae Yoo, Elijah Karpov, Carl Naylor, Ramanan Chebiam
-
Publication number: 20240222441Abstract: Devices, transistor structures, systems, and techniques, are described herein related to selective gate oxide formation on 2D materials for transistor devices. A transistor structure includes a gate dielectric structure on a 2D semiconductor material layer, and source and drain structures in contact with the gate dielectric structure and on the 2D semiconductor material layer. The source and drain structures include a metal material or metal nitride material and the gate dielectric structure includes an oxide of the metal material or metal nitride material.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Mahmut Sami Kavrik, Carl Naylor, Chelsey Dorow, Chia-Ching Lin, Dominique Adams, Kevin O'Brien, Matthew Metz, Scott Clendenning, Sudarat Lee, Tristan Tronic, Uygar Avci
-
Publication number: 20240222482Abstract: Devices, transistor structures, systems, and techniques are described herein related to field effect transistors having a doping layer on metal chalcogenide nanoribbons outside of the channel region. The doping layer is a metal oxide that shifts the electrical characteristics of the nanoribbons and is formed by depositing a metal and oxidizing the metal by exposure to ozone and ultraviolet light.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Kevin P. O'Brien, Rachel Steinhardt, Chelsey Dorow, Carl H. Naylor, Kirby Maxey, Sudarat Lee, Ashish Verma Penumatcha, Uygar Avci, Scott Clendenning, Tristan Tronic, Mahmut Sami Kavrik, Ande Kitamura
-
Publication number: 20240222485Abstract: A transistor structure includes a stack of nanoribbons coupling source and drain terminals. The nanoribbons may each include a pair of crystalline interface layers and a channel layer between the interface layers. The channel layers may be a molecular monolayer, including a metal and a chalcogen, with a thickness of less than 1 nm. The channel layers may be substantially monocrystalline, and the interface layers may be lattice matched to the channel layers. The channel layers may be epitaxially grown over the lattice-matched interface layers. The crystalline interface layers may be grown over sacrificial layers when forming the stack of nanoribbons.Type: ApplicationFiled: December 29, 2022Publication date: July 4, 2024Applicant: Intel CorporationInventors: Mahmut Sami Kavrik, Tristan Tronic, Chelsey Dorow, Kevin O?Brien, Uygar Avci, Carl H. Naylor, Chia-Ching Lin, Dominique Adams, Matthew Metz, Ande Kitamura, Scott B. Clendenning
-
Patent number: 12027458Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.Type: GrantFiled: June 15, 2022Date of Patent: July 2, 2024Assignee: Intel CorporationInventors: Kevin Lin, Noriyuki Sato, Tristan Tronic, Michael Christenson, Christopher Jezewski, Jiun-Ruey Chen, James M. Blackwell, Matthew Metz, Miriam Reshotko, Nafees Kabir, Jeffery Bielefeld, Manish Chandhok, Hui Jae Yoo, Elijah Karpov, Carl Naylor, Ramanan Chebiam
-
Publication number: 20240114696Abstract: Multiple-ferroelectric capacitor structures in memory devices, including in integrated circuit devices, and techniques for forming the structures. Insulators separating individual outer plates in a ferroelectric capacitor array are supported between wider portions of a shared, inner plate. Wider portions of an inner plate may be formed in lateral recesses between insulating layers. Ferroelectric material may be deposited over the inner plate between insulating layers after removing sacrificial layers. An etch-stop layer may protect the inner plate when sacrificial layers are removed. An etch-stop or interface layer may remain over the inner plate adjacent insulators.Type: ApplicationFiled: September 30, 2022Publication date: April 4, 2024Applicant: Intel CorporationInventors: Christopher Neumann, Cory Weinstein, Nazila Haratipour, Brian Doyle, Sou-Chi Chang, Tristan Tronic, Shriram Shivaraman, Uygar Avci
-
INTERCONNECTS HAVING A PORTION WITHOUT A LINER MATERIAL AND RELATED STRUCTURES, DEVICES, AND METHODS
Publication number: 20240038661Abstract: Integrated circuit (IC) structures, computing devices, and related methods are disclosed. An IC structure includes an interlayer dielectric (ILD), an interconnect, and a liner material separating the interconnect from the ILD. The interconnect includes a first end extending to or into the ILD and a second end opposite the first end. A second portion of the interconnect extending from the second end to a first portion of the interconnect proximate to the first end does not include the liner material thereon. A method of manufacturing an IC structure includes removing an ILD from between interconnects, applying a conformal hermetic liner, applying a carbon hard mask (CHM) between the interconnects, removing a portion of the CHM, removing the conformal hermetic liner to a remaining CHM, and removing the exposed portion of the liner material to the remaining CHM to expose the second portion of the interconnects.Type: ApplicationFiled: October 16, 2023Publication date: February 1, 2024Applicant: Intel CorporationInventors: Manish CHANDHOK, Richard SCHENKER, Tristan TRONIC -
Publication number: 20230402499Abstract: Capacitors for decoupling, power delivery, integrated circuits, related systems, and methods of fabrication are disclosed. Such capacitors include a transition metal oxide dielectric between two electrodes, at least one of which includes a conductive metal oxide layer on the transition metal oxide dielectric and a high density metal layer on the conductive metal oxide.Type: ApplicationFiled: June 8, 2022Publication date: December 14, 2023Applicant: Intel CorporationInventors: Thomas Sounart, Kaan Oguz, Neelam Prabhu Gaunkar, Tristan Tronic
-
Interconnects having a portion without a liner material and related structures, devices, and methods
Patent number: 11837542Abstract: Integrated circuit (IC) structures, computing devices, and related methods are disclosed. An IC structure includes an interlayer dielectric (ILD), an interconnect, and a liner material separating the interconnect from the ILD. The interconnect includes a first end extending to or into the ILD and a second end opposite the first end. A second portion of the interconnect extending from the second end to a first portion of the interconnect proximate to the first end does not include the liner material thereon. A method of manufacturing an IC structure includes removing an ILD from between interconnects, applying a conformal hermetic liner, applying a carbon hard mask (CHM) between the interconnects, removing a portion of the CHM, removing the conformal hermetic liner to a remaining CHM, and removing the exposed portion of the liner material to the remaining CHM to expose the second portion of the interconnects.Type: GrantFiled: January 24, 2022Date of Patent: December 5, 2023Assignee: Intel CorporationInventors: Manish Chandhok, Richard Schenker, Tristan Tronic -
Patent number: 11769814Abstract: A device is disclosed. The device includes a gate conductor, a first source-drain region and a second source-drain region. The device includes a first air gap space between the first source-drain region and a first side of the gate conductor and a second air gap space between the second source-drain region and a second side of the gate conductor. A hard mask layer that includes holes is under the gate conductor, the first source-drain region, the second source-drain region and the air gap spaces. A planar dielectric layer is under the hard mask.Type: GrantFiled: June 27, 2019Date of Patent: September 26, 2023Assignee: Intel CorporationInventors: Ehren Mannebach, Aaron Lilak, Hui Jae Yoo, Patrick Morrow, Kevin L. Lin, Tristan Tronic
-
Publication number: 20220352068Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.Type: ApplicationFiled: June 15, 2022Publication date: November 3, 2022Applicant: Intel CorporationInventors: Kevin Lin, Noriyuki Sato, Tristan Tronic, Michael Christenson, Christopher Jezewski, Jiun-Ruey Chen, James M. Blackwell, Matthew Metz, Miriam Reshotko, Nafees Kabir, Jeffery Bielefeld, Manish Chandhok, Hui Jae Yoo, Elijah Karpov, Carl Naylor, Ramanan Chebiam
-
Publication number: 20220310818Abstract: Self-aligned gate endcap (SAGE) architectures with reduced or removed caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with reduced or removed caps, are described. In an example, an integrated circuit structure includes a first gate electrode over a first semiconductor fin. A second gate electrode is over a second semiconductor fin. A gate endcap isolation structure is between the first gate electrode and the second gate electrode, the gate endcap isolation structure having a higher-k dielectric cap layer on a lower-k dielectric wall. A local interconnect is on the first gate electrode, on the higher-k dielectric cap layer, and on the second gate electrode, the local interconnect having a bottommost surface above an uppermost surface of the higher-k dielectric cap layer.Type: ApplicationFiled: March 24, 2021Publication date: September 29, 2022Inventors: Seung Hoon SUNG, Tristan TRONIC, Szuya S. LIAO, Jack T. KAVALIEROS
-
Patent number: 11444024Abstract: IC interconnect structures including subtractively patterned features. Feature ends may be defined through multiple patterning of multiple cap materials for reduced misregistration. Subtractively patterned features may be lines integrated with damascene vias or with subtractively patterned vias, or may be vias integrated with damascene lines or with subtractively patterned lines. Subtractively patterned vias may be deposited as part of a planar metal layer and defined currently with interconnect lines. Subtractively patterned features may be integrated with air gap isolation structures. Subtractively patterned features may be include a barrier material on the bottom, top, or sidewall. A bottom barrier of a subtractively patterned features may be deposited with an area selective technique to be absent from an underlying interconnect feature. A barrier of a subtractively patterned feature may comprise graphene or a chalcogenide of a metal in the feature or in a seed layer.Type: GrantFiled: November 2, 2020Date of Patent: September 13, 2022Assignee: Intel CorporationInventors: Kevin Lin, Noriyuki Sato, Tristan Tronic, Michael Christenson, Christopher Jezewski, Jiun-Ruey Chen, James M. Blackwell, Matthew Metz, Miriam Reshotko, Nafees Kabir, Jeffery Bielefeld, Manish Chandhok, Hui Jae Yoo, Elijah Karpov, Carl Naylor, Ramanan Chebiam
-
GATE DIELECTRICS FOR COMPLEMENTARY METAL OXIDE SEMICONDUCTORS TRANSISTORS AND METHODS OF FABRICATION
Publication number: 20220199619Abstract: A complementary metal oxide semiconductor (CMOS) transistor includes a first transistor with a first gate dielectric layer above a first channel, where the first gate dielectric layer includes Hf1-xZxO2, where 0.33<x<0.5. The first transistor further includes a first gate electrode on the first gate dielectric layer and a first source region and a first drain region on opposite sides of the first gate electrode. The CMOS transistor further includes a second transistor adjacent to the first transistor. The second transistor includes a second gate dielectric layer above a second channel, where the second gate dielectric layer includes Hf1-xZxO2, where 0.5<x<0.99, a second gate electrode on the second gate dielectric layer and a second source region and a second drain region on opposite sides of the second gate electrode.Type: ApplicationFiled: December 23, 2020Publication date: June 23, 2022Applicant: Intel CorporationInventors: Ashish Verma Penumatcha, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Tristan Tronic, Shriram Shivaraman, Devin Merrill, Tobias Brown-Heft, Kirby Maxey, Matthew Metz, Ian Young -
INTERCONNECTS HAVING A PORTION WITHOUT A LINER MATERIAL AND RELATED STRUCTURES, DEVICES, AND METHODS
Publication number: 20220148967Abstract: Integrated circuit (IC) structures, computing devices, and related methods are disclosed. An IC structure includes an interlayer dielectric (ILD), an interconnect, and a liner material separating the interconnect from the ILD. The interconnect includes a first end extending to or into the ILD and a second end opposite the first end. A second portion of the interconnect extending from the second end to a first portion of the interconnect proximate to the first end does not include the liner material thereon. A method of manufacturing an IC structure includes removing an ILD from between interconnects, applying a conformal hermetic liner, applying a carbon hard mask (CHM) between the interconnects, removing a portion of the CHM, removing the conformal hermetic liner to a remaining CHM, and removing the exposed portion of the liner material to the remaining CHM to expose the second portion of the interconnects.Type: ApplicationFiled: January 24, 2022Publication date: May 12, 2022Applicant: INTEL CORPORATIONInventors: Manish CHANDHOK, Richard SCHENKER, Tristan TRONIC